Loading…
Construction and characterization of Cu super(2+), Ni super(2+), Zn super(2+), and Co super(2+) modified-DNA crystals
We studied the physical characteristics of modified-DNA (M-DNA) double crossover crystals fabricated via substrate-assisted growth with various concentrations of four different divalent metallic ions, Cu super(2+), Ni super(2+), Zn super(2+), and Co super(2+). Atomic force microscopy (AFM) was used...
Saved in:
Published in: | Nanotechnology 2015-07, Vol.26 (27), p.1-8 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | 27 |
container_start_page | 1 |
container_title | Nanotechnology |
container_volume | 26 |
creator | Dugasani, Sreekantha Reddy Kim, Myoungsoon Lee, In-yeal Kim, Jang Ah Gnapareddy, Bramaramba Lee, Keun Woo Kim, Taesung Huh, Nam Kim, Gil-Ho Park, Sang Chul Park, Sung Ha |
description | We studied the physical characteristics of modified-DNA (M-DNA) double crossover crystals fabricated via substrate-assisted growth with various concentrations of four different divalent metallic ions, Cu super(2+), Ni super(2+), Zn super(2+), and Co super(2+). Atomic force microscopy (AFM) was used to test the stability of the M-DNA crystals with different metal ion concentrations. The AFM images show that M-DNA crystals formed without deformation at up to the critical concentrations of 6 mM of [Cu super(2+)], 1.5 mM of [Ni super(2+)], 1 mM of [Zn super(2+)], and 1 mM of [Co super(2+)]. Above these critical concentrations, the M-DNA crystals exhibited deformed, amorphous structures. Raman spectroscopy was then used to identify the preference of the metal ion coordinate sites. The intensities of the Raman bands gradually decreased as the concentration of the metal ions increased, and when the metal ion concentrations increased beyond the critical values, the Raman band of the amorphous M-DNA was significantly suppressed. The metal ions had a preferential binding order in the DNA molecules with G-C and A-T base pairs followed by the phosphate backbone. A two-probe station was used to measure the electrical current-voltage properties of the crystals which indicated that the maximum currents of the M-DNA complexes could be achieved at around the critical concentration of each ion. We expect that the functionalized ion-doped M-DNA crystals will allow for efficient devices and sensors to be fabricated in the near future. |
doi_str_mv | 10.1088/0957-4484/26/27/275604 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753531715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753531715</sourcerecordid><originalsourceid>FETCH-LOGICAL-p665-a1c160248a45331ea4f45f92dc86cbdaed109b515ad8e62596f6dfff490a10203</originalsourceid><addsrcrecordid>eNqNjEtLw0AUhQdRMFb_gsyyorFz53EzWZbUF5S66cpNmc4DI20mZpKF_nrrA-1SOHD4Dh-HkHNg18C0nrBSFbmUWk44Tnixi0ImD0gGAiFHxfUhyX6lY3KS0gtjAJpDRoYqNqnvBtvXsaGmcdQ-m87Y3nf1u_kaY6DVQNPQ-m7MLy-u6KLep6dmnz4fqvi30G10dai9y2eLKbXdW-rNJp2So7Arf_bTI7K8vVlW9_n88e6hms7zFlHlBiwg41IbqYQAb2SQKpTcWY127Yx3wMq1AmWc9shViQFdCEGWzADjTIzI-Pu27eLr4FO_2tbJ-s3GND4OaQWFEkpAAeofKi9QFwyF-AAn3GtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727687063</pqid></control><display><type>article</type><title>Construction and characterization of Cu super(2+), Ni super(2+), Zn super(2+), and Co super(2+) modified-DNA crystals</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Dugasani, Sreekantha Reddy ; Kim, Myoungsoon ; Lee, In-yeal ; Kim, Jang Ah ; Gnapareddy, Bramaramba ; Lee, Keun Woo ; Kim, Taesung ; Huh, Nam ; Kim, Gil-Ho ; Park, Sang Chul ; Park, Sung Ha</creator><creatorcontrib>Dugasani, Sreekantha Reddy ; Kim, Myoungsoon ; Lee, In-yeal ; Kim, Jang Ah ; Gnapareddy, Bramaramba ; Lee, Keun Woo ; Kim, Taesung ; Huh, Nam ; Kim, Gil-Ho ; Park, Sang Chul ; Park, Sung Ha</creatorcontrib><description>We studied the physical characteristics of modified-DNA (M-DNA) double crossover crystals fabricated via substrate-assisted growth with various concentrations of four different divalent metallic ions, Cu super(2+), Ni super(2+), Zn super(2+), and Co super(2+). Atomic force microscopy (AFM) was used to test the stability of the M-DNA crystals with different metal ion concentrations. The AFM images show that M-DNA crystals formed without deformation at up to the critical concentrations of 6 mM of [Cu super(2+)], 1.5 mM of [Ni super(2+)], 1 mM of [Zn super(2+)], and 1 mM of [Co super(2+)]. Above these critical concentrations, the M-DNA crystals exhibited deformed, amorphous structures. Raman spectroscopy was then used to identify the preference of the metal ion coordinate sites. The intensities of the Raman bands gradually decreased as the concentration of the metal ions increased, and when the metal ion concentrations increased beyond the critical values, the Raman band of the amorphous M-DNA was significantly suppressed. The metal ions had a preferential binding order in the DNA molecules with G-C and A-T base pairs followed by the phosphate backbone. A two-probe station was used to measure the electrical current-voltage properties of the crystals which indicated that the maximum currents of the M-DNA complexes could be achieved at around the critical concentration of each ion. We expect that the functionalized ion-doped M-DNA crystals will allow for efficient devices and sensors to be fabricated in the near future.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/26/27/275604</identifier><language>eng</language><subject>Atomic force microscopy ; Backbone ; Crossovers ; Crystals ; Deformation ; Devices ; Ion concentration ; Metal ions</subject><ispartof>Nanotechnology, 2015-07, Vol.26 (27), p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dugasani, Sreekantha Reddy</creatorcontrib><creatorcontrib>Kim, Myoungsoon</creatorcontrib><creatorcontrib>Lee, In-yeal</creatorcontrib><creatorcontrib>Kim, Jang Ah</creatorcontrib><creatorcontrib>Gnapareddy, Bramaramba</creatorcontrib><creatorcontrib>Lee, Keun Woo</creatorcontrib><creatorcontrib>Kim, Taesung</creatorcontrib><creatorcontrib>Huh, Nam</creatorcontrib><creatorcontrib>Kim, Gil-Ho</creatorcontrib><creatorcontrib>Park, Sang Chul</creatorcontrib><creatorcontrib>Park, Sung Ha</creatorcontrib><title>Construction and characterization of Cu super(2+), Ni super(2+), Zn super(2+), and Co super(2+) modified-DNA crystals</title><title>Nanotechnology</title><description>We studied the physical characteristics of modified-DNA (M-DNA) double crossover crystals fabricated via substrate-assisted growth with various concentrations of four different divalent metallic ions, Cu super(2+), Ni super(2+), Zn super(2+), and Co super(2+). Atomic force microscopy (AFM) was used to test the stability of the M-DNA crystals with different metal ion concentrations. The AFM images show that M-DNA crystals formed without deformation at up to the critical concentrations of 6 mM of [Cu super(2+)], 1.5 mM of [Ni super(2+)], 1 mM of [Zn super(2+)], and 1 mM of [Co super(2+)]. Above these critical concentrations, the M-DNA crystals exhibited deformed, amorphous structures. Raman spectroscopy was then used to identify the preference of the metal ion coordinate sites. The intensities of the Raman bands gradually decreased as the concentration of the metal ions increased, and when the metal ion concentrations increased beyond the critical values, the Raman band of the amorphous M-DNA was significantly suppressed. The metal ions had a preferential binding order in the DNA molecules with G-C and A-T base pairs followed by the phosphate backbone. A two-probe station was used to measure the electrical current-voltage properties of the crystals which indicated that the maximum currents of the M-DNA complexes could be achieved at around the critical concentration of each ion. We expect that the functionalized ion-doped M-DNA crystals will allow for efficient devices and sensors to be fabricated in the near future.</description><subject>Atomic force microscopy</subject><subject>Backbone</subject><subject>Crossovers</subject><subject>Crystals</subject><subject>Deformation</subject><subject>Devices</subject><subject>Ion concentration</subject><subject>Metal ions</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNjEtLw0AUhQdRMFb_gsyyorFz53EzWZbUF5S66cpNmc4DI20mZpKF_nrrA-1SOHD4Dh-HkHNg18C0nrBSFbmUWk44Tnixi0ImD0gGAiFHxfUhyX6lY3KS0gtjAJpDRoYqNqnvBtvXsaGmcdQ-m87Y3nf1u_kaY6DVQNPQ-m7MLy-u6KLep6dmnz4fqvi30G10dai9y2eLKbXdW-rNJp2So7Arf_bTI7K8vVlW9_n88e6hms7zFlHlBiwg41IbqYQAb2SQKpTcWY127Yx3wMq1AmWc9shViQFdCEGWzADjTIzI-Pu27eLr4FO_2tbJ-s3GND4OaQWFEkpAAeofKi9QFwyF-AAn3GtA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Dugasani, Sreekantha Reddy</creator><creator>Kim, Myoungsoon</creator><creator>Lee, In-yeal</creator><creator>Kim, Jang Ah</creator><creator>Gnapareddy, Bramaramba</creator><creator>Lee, Keun Woo</creator><creator>Kim, Taesung</creator><creator>Huh, Nam</creator><creator>Kim, Gil-Ho</creator><creator>Park, Sang Chul</creator><creator>Park, Sung Ha</creator><scope>7TM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150701</creationdate><title>Construction and characterization of Cu super(2+), Ni super(2+), Zn super(2+), and Co super(2+) modified-DNA crystals</title><author>Dugasani, Sreekantha Reddy ; Kim, Myoungsoon ; Lee, In-yeal ; Kim, Jang Ah ; Gnapareddy, Bramaramba ; Lee, Keun Woo ; Kim, Taesung ; Huh, Nam ; Kim, Gil-Ho ; Park, Sang Chul ; Park, Sung Ha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p665-a1c160248a45331ea4f45f92dc86cbdaed109b515ad8e62596f6dfff490a10203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic force microscopy</topic><topic>Backbone</topic><topic>Crossovers</topic><topic>Crystals</topic><topic>Deformation</topic><topic>Devices</topic><topic>Ion concentration</topic><topic>Metal ions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dugasani, Sreekantha Reddy</creatorcontrib><creatorcontrib>Kim, Myoungsoon</creatorcontrib><creatorcontrib>Lee, In-yeal</creatorcontrib><creatorcontrib>Kim, Jang Ah</creatorcontrib><creatorcontrib>Gnapareddy, Bramaramba</creatorcontrib><creatorcontrib>Lee, Keun Woo</creatorcontrib><creatorcontrib>Kim, Taesung</creatorcontrib><creatorcontrib>Huh, Nam</creatorcontrib><creatorcontrib>Kim, Gil-Ho</creatorcontrib><creatorcontrib>Park, Sang Chul</creatorcontrib><creatorcontrib>Park, Sung Ha</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dugasani, Sreekantha Reddy</au><au>Kim, Myoungsoon</au><au>Lee, In-yeal</au><au>Kim, Jang Ah</au><au>Gnapareddy, Bramaramba</au><au>Lee, Keun Woo</au><au>Kim, Taesung</au><au>Huh, Nam</au><au>Kim, Gil-Ho</au><au>Park, Sang Chul</au><au>Park, Sung Ha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction and characterization of Cu super(2+), Ni super(2+), Zn super(2+), and Co super(2+) modified-DNA crystals</atitle><jtitle>Nanotechnology</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>26</volume><issue>27</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><abstract>We studied the physical characteristics of modified-DNA (M-DNA) double crossover crystals fabricated via substrate-assisted growth with various concentrations of four different divalent metallic ions, Cu super(2+), Ni super(2+), Zn super(2+), and Co super(2+). Atomic force microscopy (AFM) was used to test the stability of the M-DNA crystals with different metal ion concentrations. The AFM images show that M-DNA crystals formed without deformation at up to the critical concentrations of 6 mM of [Cu super(2+)], 1.5 mM of [Ni super(2+)], 1 mM of [Zn super(2+)], and 1 mM of [Co super(2+)]. Above these critical concentrations, the M-DNA crystals exhibited deformed, amorphous structures. Raman spectroscopy was then used to identify the preference of the metal ion coordinate sites. The intensities of the Raman bands gradually decreased as the concentration of the metal ions increased, and when the metal ion concentrations increased beyond the critical values, the Raman band of the amorphous M-DNA was significantly suppressed. The metal ions had a preferential binding order in the DNA molecules with G-C and A-T base pairs followed by the phosphate backbone. A two-probe station was used to measure the electrical current-voltage properties of the crystals which indicated that the maximum currents of the M-DNA complexes could be achieved at around the critical concentration of each ion. We expect that the functionalized ion-doped M-DNA crystals will allow for efficient devices and sensors to be fabricated in the near future.</abstract><doi>10.1088/0957-4484/26/27/275604</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2015-07, Vol.26 (27), p.1-8 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753531715 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Atomic force microscopy Backbone Crossovers Crystals Deformation Devices Ion concentration Metal ions |
title | Construction and characterization of Cu super(2+), Ni super(2+), Zn super(2+), and Co super(2+) modified-DNA crystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20and%20characterization%20of%20Cu%20super(2+),%20Ni%20super(2+),%20Zn%20super(2+),%20and%20Co%20super(2+)%20modified-DNA%20crystals&rft.jtitle=Nanotechnology&rft.au=Dugasani,%20Sreekantha%20Reddy&rft.date=2015-07-01&rft.volume=26&rft.issue=27&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/0957-4484/26/27/275604&rft_dat=%3Cproquest%3E1753531715%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p665-a1c160248a45331ea4f45f92dc86cbdaed109b515ad8e62596f6dfff490a10203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1727687063&rft_id=info:pmid/&rfr_iscdi=true |