Loading…

A meshless algorithm with moving least square approximations for elliptic Signorini problems

Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini pro...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2014-09, Vol.23 (9), p.35-42
Main Author: 王延冲 李小林
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173
cites cdi_FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173
container_end_page 42
container_issue 9
container_start_page 35
container_title Chinese physics B
container_volume 23
creator 王延冲 李小林
description Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.
doi_str_mv 10.1088/1674-1056/23/9/090202
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753539181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662184528</cqvip_id><sourcerecordid>1753539181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWKuPIARXbsbJyWWSWZbiDQou1J0QMjEzjcytydTL25vS0s05m-8_lw-hayB3QJTKoZA8AyKKnLK8zElJKKEnaEaJUBlTjJ-i2ZE5RxcxfhFSAKFshj4WuHNx3boYsWmbIfhp3eGfVHE3fPu-wa0zccJxszXBYTOOYfj1nZn80EdcDwG7tvXj5C1-9U2f8r3Hiala18VLdFabNrqrQ5-j94f7t-VTtnp5fF4uVpllwKbM1oxXQBhn1gEYJQohqRAVCAKyME5YrioJlnIjee2kM-VnqVxdSisIA8nm6HY_Ny3ebF2cdOejTYeZ3g3bqEEKJlgJChIq9qgNQ4zB1XoM6Z3wp4HonU29M6V3pjRlutR7myl3c8ith77ZJDHHYFFQUFxQxf4B3bN0SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753539181</pqid></control><display><type>article</type><title>A meshless algorithm with moving least square approximations for elliptic Signorini problems</title><source>Institute of Physics</source><creator>王延冲 李小林</creator><creatorcontrib>王延冲 李小林</creatorcontrib><description>Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/23/9/090202</identifier><language>eng</language><subject>Algorithms ; Approximation ; Boundaries ; Computational efficiency ; Convergence ; Finite element method ; Least squares method ; Mathematical analysis ; Meshless methods ; Signorini问题 ; 收敛性证明 ; 无网格算法 ; 移动最小二乘 ; 边界积分方程 ; 近似估算 ; 近似椭圆 ; 非线性边界条件</subject><ispartof>Chinese physics B, 2014-09, Vol.23 (9), p.35-42</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173</citedby><cites>FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>王延冲 李小林</creatorcontrib><title>A meshless algorithm with moving least square approximations for elliptic Signorini problems</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundaries</subject><subject>Computational efficiency</subject><subject>Convergence</subject><subject>Finite element method</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Meshless methods</subject><subject>Signorini问题</subject><subject>收敛性证明</subject><subject>无网格算法</subject><subject>移动最小二乘</subject><subject>边界积分方程</subject><subject>近似估算</subject><subject>近似椭圆</subject><subject>非线性边界条件</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMoWKuPIARXbsbJyWWSWZbiDQou1J0QMjEzjcytydTL25vS0s05m-8_lw-hayB3QJTKoZA8AyKKnLK8zElJKKEnaEaJUBlTjJ-i2ZE5RxcxfhFSAKFshj4WuHNx3boYsWmbIfhp3eGfVHE3fPu-wa0zccJxszXBYTOOYfj1nZn80EdcDwG7tvXj5C1-9U2f8r3Hiala18VLdFabNrqrQ5-j94f7t-VTtnp5fF4uVpllwKbM1oxXQBhn1gEYJQohqRAVCAKyME5YrioJlnIjee2kM-VnqVxdSisIA8nm6HY_Ny3ebF2cdOejTYeZ3g3bqEEKJlgJChIq9qgNQ4zB1XoM6Z3wp4HonU29M6V3pjRlutR7myl3c8ith77ZJDHHYFFQUFxQxf4B3bN0SQ</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>王延冲 李小林</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>A meshless algorithm with moving least square approximations for elliptic Signorini problems</title><author>王延冲 李小林</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundaries</topic><topic>Computational efficiency</topic><topic>Convergence</topic><topic>Finite element method</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Meshless methods</topic><topic>Signorini问题</topic><topic>收敛性证明</topic><topic>无网格算法</topic><topic>移动最小二乘</topic><topic>边界积分方程</topic><topic>近似估算</topic><topic>近似椭圆</topic><topic>非线性边界条件</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王延冲 李小林</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王延冲 李小林</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A meshless algorithm with moving least square approximations for elliptic Signorini problems</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>23</volume><issue>9</issue><spage>35</spage><epage>42</epage><pages>35-42</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.</abstract><doi>10.1088/1674-1056/23/9/090202</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2014-09, Vol.23 (9), p.35-42
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1753539181
source Institute of Physics
subjects Algorithms
Approximation
Boundaries
Computational efficiency
Convergence
Finite element method
Least squares method
Mathematical analysis
Meshless methods
Signorini问题
收敛性证明
无网格算法
移动最小二乘
边界积分方程
近似估算
近似椭圆
非线性边界条件
title A meshless algorithm with moving least square approximations for elliptic Signorini problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20meshless%20algorithm%20with%20moving%20least%20square%20approximations%20for%20elliptic%20Signorini%20problems&rft.jtitle=Chinese%20physics%20B&rft.au=%E7%8E%8B%E5%BB%B6%E5%86%B2%20%E6%9D%8E%E5%B0%8F%E6%9E%97&rft.date=2014-09-01&rft.volume=23&rft.issue=9&rft.spage=35&rft.epage=42&rft.pages=35-42&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/23/9/090202&rft_dat=%3Cproquest_cross%3E1753539181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753539181&rft_id=info:pmid/&rft_cqvip_id=662184528&rfr_iscdi=true