Loading…
A meshless algorithm with moving least square approximations for elliptic Signorini problems
Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini pro...
Saved in:
Published in: | Chinese physics B 2014-09, Vol.23 (9), p.35-42 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173 |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173 |
container_end_page | 42 |
container_issue | 9 |
container_start_page | 35 |
container_title | Chinese physics B |
container_volume | 23 |
creator | 王延冲 李小林 |
description | Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm. |
doi_str_mv | 10.1088/1674-1056/23/9/090202 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753539181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662184528</cqvip_id><sourcerecordid>1753539181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWKuPIARXbsbJyWWSWZbiDQou1J0QMjEzjcytydTL25vS0s05m-8_lw-hayB3QJTKoZA8AyKKnLK8zElJKKEnaEaJUBlTjJ-i2ZE5RxcxfhFSAKFshj4WuHNx3boYsWmbIfhp3eGfVHE3fPu-wa0zccJxszXBYTOOYfj1nZn80EdcDwG7tvXj5C1-9U2f8r3Hiala18VLdFabNrqrQ5-j94f7t-VTtnp5fF4uVpllwKbM1oxXQBhn1gEYJQohqRAVCAKyME5YrioJlnIjee2kM-VnqVxdSisIA8nm6HY_Ny3ebF2cdOejTYeZ3g3bqEEKJlgJChIq9qgNQ4zB1XoM6Z3wp4HonU29M6V3pjRlutR7myl3c8ith77ZJDHHYFFQUFxQxf4B3bN0SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753539181</pqid></control><display><type>article</type><title>A meshless algorithm with moving least square approximations for elliptic Signorini problems</title><source>Institute of Physics</source><creator>王延冲 李小林</creator><creatorcontrib>王延冲 李小林</creatorcontrib><description>Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/23/9/090202</identifier><language>eng</language><subject>Algorithms ; Approximation ; Boundaries ; Computational efficiency ; Convergence ; Finite element method ; Least squares method ; Mathematical analysis ; Meshless methods ; Signorini问题 ; 收敛性证明 ; 无网格算法 ; 移动最小二乘 ; 边界积分方程 ; 近似估算 ; 近似椭圆 ; 非线性边界条件</subject><ispartof>Chinese physics B, 2014-09, Vol.23 (9), p.35-42</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173</citedby><cites>FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>王延冲 李小林</creatorcontrib><title>A meshless algorithm with moving least square approximations for elliptic Signorini problems</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundaries</subject><subject>Computational efficiency</subject><subject>Convergence</subject><subject>Finite element method</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Meshless methods</subject><subject>Signorini问题</subject><subject>收敛性证明</subject><subject>无网格算法</subject><subject>移动最小二乘</subject><subject>边界积分方程</subject><subject>近似估算</subject><subject>近似椭圆</subject><subject>非线性边界条件</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMoWKuPIARXbsbJyWWSWZbiDQou1J0QMjEzjcytydTL25vS0s05m-8_lw-hayB3QJTKoZA8AyKKnLK8zElJKKEnaEaJUBlTjJ-i2ZE5RxcxfhFSAKFshj4WuHNx3boYsWmbIfhp3eGfVHE3fPu-wa0zccJxszXBYTOOYfj1nZn80EdcDwG7tvXj5C1-9U2f8r3Hiala18VLdFabNrqrQ5-j94f7t-VTtnp5fF4uVpllwKbM1oxXQBhn1gEYJQohqRAVCAKyME5YrioJlnIjee2kM-VnqVxdSisIA8nm6HY_Ny3ebF2cdOejTYeZ3g3bqEEKJlgJChIq9qgNQ4zB1XoM6Z3wp4HonU29M6V3pjRlutR7myl3c8ith77ZJDHHYFFQUFxQxf4B3bN0SQ</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>王延冲 李小林</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>A meshless algorithm with moving least square approximations for elliptic Signorini problems</title><author>王延冲 李小林</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundaries</topic><topic>Computational efficiency</topic><topic>Convergence</topic><topic>Finite element method</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Meshless methods</topic><topic>Signorini问题</topic><topic>收敛性证明</topic><topic>无网格算法</topic><topic>移动最小二乘</topic><topic>边界积分方程</topic><topic>近似估算</topic><topic>近似椭圆</topic><topic>非线性边界条件</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王延冲 李小林</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王延冲 李小林</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A meshless algorithm with moving least square approximations for elliptic Signorini problems</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>23</volume><issue>9</issue><spage>35</spage><epage>42</epage><pages>35-42</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.</abstract><doi>10.1088/1674-1056/23/9/090202</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2014-09, Vol.23 (9), p.35-42 |
issn | 1674-1056 2058-3834 1741-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753539181 |
source | Institute of Physics |
subjects | Algorithms Approximation Boundaries Computational efficiency Convergence Finite element method Least squares method Mathematical analysis Meshless methods Signorini问题 收敛性证明 无网格算法 移动最小二乘 边界积分方程 近似估算 近似椭圆 非线性边界条件 |
title | A meshless algorithm with moving least square approximations for elliptic Signorini problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20meshless%20algorithm%20with%20moving%20least%20square%20approximations%20for%20elliptic%20Signorini%20problems&rft.jtitle=Chinese%20physics%20B&rft.au=%E7%8E%8B%E5%BB%B6%E5%86%B2%20%E6%9D%8E%E5%B0%8F%E6%9E%97&rft.date=2014-09-01&rft.volume=23&rft.issue=9&rft.spage=35&rft.epage=42&rft.pages=35-42&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/23/9/090202&rft_dat=%3Cproquest_cross%3E1753539181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-cf34b10343ce11a85657255b150176ae5c48b71c24a74fe7ea9d98ef97c503173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753539181&rft_id=info:pmid/&rft_cqvip_id=662184528&rfr_iscdi=true |