Loading…

Electronic states and shapes of silicon quantum dots

A curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in the bandgap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for exampl...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2013-06, Vol.22 (6), p.385-388, Article 064207
Main Author: 黄伟其 苗信建 黄忠梅 陈汉琼 苏琴
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-50298c70fc879206a5fb77906aac099464950fd95a9aa196192764730910f0923
cites cdi_FETCH-LOGICAL-c312t-50298c70fc879206a5fb77906aac099464950fd95a9aa196192764730910f0923
container_end_page 388
container_issue 6
container_start_page 385
container_title Chinese physics B
container_volume 22
creator 黄伟其 苗信建 黄忠梅 陈汉琼 苏琴
description A curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in the bandgap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, a Si-O-Si bridge bond on curved surface provides localized levels in bandgap and its bonding energy is shallower than that on the facet. The red-shifting ofthe photoluminescence spectrum on smaller silicon quantum dots can be explained by the curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels provided by the curved surface effect.
doi_str_mv 10.1088/1674-1056/22/6/064207
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753539444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>46150758</cqvip_id><sourcerecordid>1753539444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-50298c70fc879206a5fb77906aac099464950fd95a9aa196192764730910f0923</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QRh3bsa5eU9wJaU-oOBG1yGmkzYyTdoks_DfO6WlCzeu7lmc71z4ELrF8IChbRssJKsxcNEQ0ogGBCMgz9CEAG9r2lJ2jianziW6yvkbQGAgdILYvO9sSTF4W-ViSpcrE5ZVXpvtGKOrsu-9jaHaDSaUYVMtY8nX6MKZPnc3xztFn8_zj9lrvXh_eZs9LWpLMSk1B6JaK8HZVioCwnD3JaUag7GgFBNMcXBLxY0yBiuBFZGCSQoKgwNF6BTdH3a3Ke6GLhe98dl2fW9CF4esseSUU8UYG6v8ULUp5pw6p7fJb0z60Rj03pLeG9B7A5oQLfTB0sg9_uGsHzX4GEoyvv-XvjvS6xhWOx9Wp7dMYA6St_QXCAZ1tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753539444</pqid></control><display><type>article</type><title>Electronic states and shapes of silicon quantum dots</title><source>Institute of Physics</source><creator>黄伟其 苗信建 黄忠梅 陈汉琼 苏琴</creator><creatorcontrib>黄伟其 苗信建 黄忠梅 陈汉琼 苏琴</creatorcontrib><description>A curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in the bandgap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, a Si-O-Si bridge bond on curved surface provides localized levels in bandgap and its bonding energy is shallower than that on the facet. The red-shifting ofthe photoluminescence spectrum on smaller silicon quantum dots can be explained by the curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels provided by the curved surface effect.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/22/6/064207</identifier><language>eng</language><subject>Bonding ; Bridges (structures) ; Curved ; Electron states ; Emission ; Mathematical analysis ; Quantum dots ; Silicon ; Surface chemistry</subject><ispartof>Chinese physics B, 2013-06, Vol.22 (6), p.385-388, Article 064207</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-50298c70fc879206a5fb77906aac099464950fd95a9aa196192764730910f0923</citedby><cites>FETCH-LOGICAL-c312t-50298c70fc879206a5fb77906aac099464950fd95a9aa196192764730910f0923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>黄伟其 苗信建 黄忠梅 陈汉琼 苏琴</creatorcontrib><title>Electronic states and shapes of silicon quantum dots</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>A curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in the bandgap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, a Si-O-Si bridge bond on curved surface provides localized levels in bandgap and its bonding energy is shallower than that on the facet. The red-shifting ofthe photoluminescence spectrum on smaller silicon quantum dots can be explained by the curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels provided by the curved surface effect.</description><subject>Bonding</subject><subject>Bridges (structures)</subject><subject>Curved</subject><subject>Electron states</subject><subject>Emission</subject><subject>Mathematical analysis</subject><subject>Quantum dots</subject><subject>Silicon</subject><subject>Surface chemistry</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QRh3bsa5eU9wJaU-oOBG1yGmkzYyTdoks_DfO6WlCzeu7lmc71z4ELrF8IChbRssJKsxcNEQ0ogGBCMgz9CEAG9r2lJ2jianziW6yvkbQGAgdILYvO9sSTF4W-ViSpcrE5ZVXpvtGKOrsu-9jaHaDSaUYVMtY8nX6MKZPnc3xztFn8_zj9lrvXh_eZs9LWpLMSk1B6JaK8HZVioCwnD3JaUag7GgFBNMcXBLxY0yBiuBFZGCSQoKgwNF6BTdH3a3Ke6GLhe98dl2fW9CF4esseSUU8UYG6v8ULUp5pw6p7fJb0z60Rj03pLeG9B7A5oQLfTB0sg9_uGsHzX4GEoyvv-XvjvS6xhWOx9Wp7dMYA6St_QXCAZ1tg</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>黄伟其 苗信建 黄忠梅 陈汉琼 苏琴</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130601</creationdate><title>Electronic states and shapes of silicon quantum dots</title><author>黄伟其 苗信建 黄忠梅 陈汉琼 苏琴</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-50298c70fc879206a5fb77906aac099464950fd95a9aa196192764730910f0923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bonding</topic><topic>Bridges (structures)</topic><topic>Curved</topic><topic>Electron states</topic><topic>Emission</topic><topic>Mathematical analysis</topic><topic>Quantum dots</topic><topic>Silicon</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>黄伟其 苗信建 黄忠梅 陈汉琼 苏琴</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>黄伟其 苗信建 黄忠梅 陈汉琼 苏琴</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic states and shapes of silicon quantum dots</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>22</volume><issue>6</issue><spage>385</spage><epage>388</epage><pages>385-388</pages><artnum>064207</artnum><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>A curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in the bandgap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, a Si-O-Si bridge bond on curved surface provides localized levels in bandgap and its bonding energy is shallower than that on the facet. The red-shifting ofthe photoluminescence spectrum on smaller silicon quantum dots can be explained by the curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels provided by the curved surface effect.</abstract><doi>10.1088/1674-1056/22/6/064207</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2013-06, Vol.22 (6), p.385-388, Article 064207
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1753539444
source Institute of Physics
subjects Bonding
Bridges (structures)
Curved
Electron states
Emission
Mathematical analysis
Quantum dots
Silicon
Surface chemistry
title Electronic states and shapes of silicon quantum dots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20states%20and%20shapes%20of%20silicon%20quantum%20dots&rft.jtitle=Chinese%20physics%20B&rft.au=%E9%BB%84%E4%BC%9F%E5%85%B6%20%E8%8B%97%E4%BF%A1%E5%BB%BA%20%E9%BB%84%E5%BF%A0%E6%A2%85%20%E9%99%88%E6%B1%89%E7%90%BC%20%E8%8B%8F%E7%90%B4&rft.date=2013-06-01&rft.volume=22&rft.issue=6&rft.spage=385&rft.epage=388&rft.pages=385-388&rft.artnum=064207&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/22/6/064207&rft_dat=%3Cproquest_cross%3E1753539444%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-50298c70fc879206a5fb77906aac099464950fd95a9aa196192764730910f0923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753539444&rft_id=info:pmid/&rft_cqvip_id=46150758&rfr_iscdi=true