Loading…

Molecular cloning and characterization of caffeic acid 3-O-methyltransferase from the rhizome of Ligusticum chuanxiong

OBJECTIVES: To clone and characterize caffeic acid 3-O-methyltransferase (LcCOMT) from the rhizome of Ligusticum chuanxiong, a traditional medicinal herb having a high content of ferulic acid. RESULTS: LcCOMT encoded an ORF of 362 amino acids with a calculated MW of 39,935 Da and pI of 5.94. Polygen...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology letters 2015-11, Vol.37 (11), p.2295-2302
Main Authors: Li, Juan-Juan, Zhang, Gan, Yu, Ji-hua, Li, Yang-yang, Huang, Xin-he, Wang, Wan-Jun, Tan, Rui, Zhou, Jia-yu, Liao, Hai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:OBJECTIVES: To clone and characterize caffeic acid 3-O-methyltransferase (LcCOMT) from the rhizome of Ligusticum chuanxiong, a traditional medicinal herb having a high content of ferulic acid. RESULTS: LcCOMT encoded an ORF of 362 amino acids with a calculated MW of 39,935 Da and pI of 5.94. Polygenetic tree indicated that LcCOMT was attributed to a new member of COMTs in plants. The recombinant LcCOMT was expressed in E. coli. HPLC and ¹H NMR analyses of purified LcCOMT protein confirmed that it could catalyze caffeic acid to produce ferulic acid in vitro. The further site-mutagenesis proved that His268 was one key catalytic residue. In addition, the substantial changing expression level of LcCOMT under chilling treatment suggested that LcCOMT might play important role in the accumulation of ferulic acid under chilling treatment. CONCLUSIONS: This is the first report of the isolation and characterization of a COMT clone from traditional medicine containing high contents of pharmaceutical ferulic acid.
ISSN:0141-5492
1573-6776
DOI:10.1007/s10529-015-1917-y