Loading…
Modeling and state of charge estimation of lithium-ion battery
Modeling and state of charge (SOC) estimation of lithium-ion (Li-ion) battery are the key techniques of battery pack management system (BMS) and critical to its reliability and safety operation. An auto-regressive with exogenous input (ARX) model is derived from RC equivalent circuit model (ECM) due...
Saved in:
Published in: | Advances in manufacturing 2015-09, Vol.3 (3), p.202-211 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Modeling and state of charge (SOC) estimation of lithium-ion (Li-ion) battery are the key techniques of battery pack management system (BMS) and critical to its reliability and safety operation. An auto-regressive with exogenous input (ARX) model is derived from RC equivalent circuit model (ECM) due to the discrete-time characteristics of BMS. For the time-varying environmental factors and the actual battery operating conditions, a variable forgetting factor recursive least square (VFFRLS) algorithm is adopted as an adaptive parameter identification method. Based on the designed model, a SOC estimator using cubature Kalman filter (CKF) algorithm is then employed to improve estimation performance and guarantee numerical stability in the computational procedure. In the battery tests, experimental results show that CKF SOC estimator has a more accuracy estimation than extended Kalman filter (EKF) algorithm, which is widely used for Li-ion battery SOC estimation, and the maximum estimation error is about 2.3%. |
---|---|
ISSN: | 2095-3127 2195-3597 |
DOI: | 10.1007/s40436-015-0116-3 |