Loading…
in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells
Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using...
Saved in:
Published in: | Journal of biomedical materials research. Part A 2015-11, Vol.103 (11), p.3419-3430 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33 |
container_end_page | 3430 |
container_issue | 11 |
container_start_page | 3419 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 103 |
creator | Castells-Sala, Cristina Martínez-Ramos, Cristina Vallés-Lluch, Ana Monleón Pradas, Manuel Semino, Carlos |
description | Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue‐derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16‐I peptide gel in microporous poly(ethyl acrylate) polymers using two‐dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self‐assembling peptide RAD16‐I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16‐I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16‐I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3419–3430, 2015. |
doi_str_mv | 10.1002/jbm.a.35482 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753547994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722180870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33</originalsourceid><addsrcrecordid>eNqN0k1v1DAQBuAIgWgpnLgjS1yQUBbHH7FzbCtoQQWEVFRulhNPtl6cOLWdLf0__FC8pO2BA-rJlv3Mq7E1RfGywqsKY_Ju0w4rvaKcSfKo2K84JyVrav54t2dNSUlT7xXPYtxkXGNOnhZ7hDeYUiL2i992RFubgkcGtuD8NMCYkO9Ra70dJqfHFNGgDaB52h2D0zH5AYLtUOx033tnIrq26RJNMCWb4Roc6q1zdlyjCGDALPeX86BHFOe2m5Mewc8RaWMnHwElG-MMpcmx28yn4Ncw2uQD6sC5-Lx40msX4cXtelB8__D-_Pi0PPt68vH48KzsaixJ2RBcM4oZN11Ty7brOauJphhaaXqBoWs6I0nbi0ow1nKsDctecsw1rdqW0oPizZKbG7iaISY12LjrYGlXVYLnbxZNwx5ACakklgI_gGYoJG9kpq__oRs_hzG_eacEwURykdXbRXXBxxigV1Owgw43qsJqNxIqj4TS6u9IZP3qNnNuBzD39m4GMiALuLYObv6XpT4dfT68Sy2XIhsT_Lov0uGnqgUVXF18OVHs9PzixxEV6hv9A5P50uY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1717202857</pqid></control><display><type>article</type><title>in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Castells-Sala, Cristina ; Martínez-Ramos, Cristina ; Vallés-Lluch, Ana ; Monleón Pradas, Manuel ; Semino, Carlos</creator><creatorcontrib>Castells-Sala, Cristina ; Martínez-Ramos, Cristina ; Vallés-Lluch, Ana ; Monleón Pradas, Manuel ; Semino, Carlos</creatorcontrib><description>Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue‐derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16‐I peptide gel in microporous poly(ethyl acrylate) polymers using two‐dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self‐assembling peptide RAD16‐I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16‐I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16‐I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3419–3430, 2015.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35482</identifier><identifier>PMID: 25903327</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Acrylic Resins - pharmacology ; bioactive patch ; Biocompatibility ; Biocompatible Materials - pharmacology ; Biomaterials ; Biomedical materials ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Cells, Cultured ; Coating ; elastomeric membrane ; Gels - pharmacology ; Gene Expression Profiling ; Humans ; mesenchymal stem cells-like cells ; Microscopy, Confocal ; Peptides ; Peptides - pharmacology ; Polymers - pharmacology ; Prostheses and Implants ; Scaffolds ; self-assembling peptide ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - metabolism ; Strategy ; Subcutaneous Fat - cytology ; Surgical implants ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2015-11, Vol.103 (11), p.3419-3430</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33</citedby><cites>FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25903327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castells-Sala, Cristina</creatorcontrib><creatorcontrib>Martínez-Ramos, Cristina</creatorcontrib><creatorcontrib>Vallés-Lluch, Ana</creatorcontrib><creatorcontrib>Monleón Pradas, Manuel</creatorcontrib><creatorcontrib>Semino, Carlos</creatorcontrib><title>in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue‐derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16‐I peptide gel in microporous poly(ethyl acrylate) polymers using two‐dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self‐assembling peptide RAD16‐I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16‐I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16‐I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3419–3430, 2015.</description><subject>Acrylic Resins - pharmacology</subject><subject>bioactive patch</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Coating</subject><subject>elastomeric membrane</subject><subject>Gels - pharmacology</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>mesenchymal stem cells-like cells</subject><subject>Microscopy, Confocal</subject><subject>Peptides</subject><subject>Peptides - pharmacology</subject><subject>Polymers - pharmacology</subject><subject>Prostheses and Implants</subject><subject>Scaffolds</subject><subject>self-assembling peptide</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><subject>Strategy</subject><subject>Subcutaneous Fat - cytology</subject><subject>Surgical implants</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0k1v1DAQBuAIgWgpnLgjS1yQUBbHH7FzbCtoQQWEVFRulhNPtl6cOLWdLf0__FC8pO2BA-rJlv3Mq7E1RfGywqsKY_Ju0w4rvaKcSfKo2K84JyVrav54t2dNSUlT7xXPYtxkXGNOnhZ7hDeYUiL2i992RFubgkcGtuD8NMCYkO9Ra70dJqfHFNGgDaB52h2D0zH5AYLtUOx033tnIrq26RJNMCWb4Roc6q1zdlyjCGDALPeX86BHFOe2m5Mewc8RaWMnHwElG-MMpcmx28yn4Ncw2uQD6sC5-Lx40msX4cXtelB8__D-_Pi0PPt68vH48KzsaixJ2RBcM4oZN11Ty7brOauJphhaaXqBoWs6I0nbi0ow1nKsDctecsw1rdqW0oPizZKbG7iaISY12LjrYGlXVYLnbxZNwx5ACakklgI_gGYoJG9kpq__oRs_hzG_eacEwURykdXbRXXBxxigV1Owgw43qsJqNxIqj4TS6u9IZP3qNnNuBzD39m4GMiALuLYObv6XpT4dfT68Sy2XIhsT_Lov0uGnqgUVXF18OVHs9PzixxEV6hv9A5P50uY</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Castells-Sala, Cristina</creator><creator>Martínez-Ramos, Cristina</creator><creator>Vallés-Lluch, Ana</creator><creator>Monleón Pradas, Manuel</creator><creator>Semino, Carlos</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201511</creationdate><title>in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells</title><author>Castells-Sala, Cristina ; Martínez-Ramos, Cristina ; Vallés-Lluch, Ana ; Monleón Pradas, Manuel ; Semino, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acrylic Resins - pharmacology</topic><topic>bioactive patch</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Coating</topic><topic>elastomeric membrane</topic><topic>Gels - pharmacology</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>mesenchymal stem cells-like cells</topic><topic>Microscopy, Confocal</topic><topic>Peptides</topic><topic>Peptides - pharmacology</topic><topic>Polymers - pharmacology</topic><topic>Prostheses and Implants</topic><topic>Scaffolds</topic><topic>self-assembling peptide</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><topic>Strategy</topic><topic>Subcutaneous Fat - cytology</topic><topic>Surgical implants</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castells-Sala, Cristina</creatorcontrib><creatorcontrib>Martínez-Ramos, Cristina</creatorcontrib><creatorcontrib>Vallés-Lluch, Ana</creatorcontrib><creatorcontrib>Monleón Pradas, Manuel</creatorcontrib><creatorcontrib>Semino, Carlos</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castells-Sala, Cristina</au><au>Martínez-Ramos, Cristina</au><au>Vallés-Lluch, Ana</au><au>Monleón Pradas, Manuel</au><au>Semino, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2015-11</date><risdate>2015</risdate><volume>103</volume><issue>11</issue><spage>3419</spage><epage>3430</epage><pages>3419-3430</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue‐derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16‐I peptide gel in microporous poly(ethyl acrylate) polymers using two‐dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self‐assembling peptide RAD16‐I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16‐I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16‐I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3419–3430, 2015.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25903327</pmid><doi>10.1002/jbm.a.35482</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2015-11, Vol.103 (11), p.3419-3430 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753547994 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Acrylic Resins - pharmacology bioactive patch Biocompatibility Biocompatible Materials - pharmacology Biomaterials Biomedical materials Cell Proliferation - drug effects Cell Survival - drug effects Cells, Cultured Coating elastomeric membrane Gels - pharmacology Gene Expression Profiling Humans mesenchymal stem cells-like cells Microscopy, Confocal Peptides Peptides - pharmacology Polymers - pharmacology Prostheses and Implants Scaffolds self-assembling peptide Stem Cells - cytology Stem Cells - drug effects Stem Cells - metabolism Strategy Subcutaneous Fat - cytology Surgical implants Tissue Scaffolds - chemistry |
title | in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=in%20vitro%20development%20of%20bioimplants%20made%20up%20of%20elastomeric%20scaffolds%20with%20peptide%20gel%20filling%20seeded%20with%20human%20subcutaneous%20adipose%20tissue-derived%20progenitor%20cells&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Castells-Sala,%20Cristina&rft.date=2015-11&rft.volume=103&rft.issue=11&rft.spage=3419&rft.epage=3430&rft.pages=3419-3430&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35482&rft_dat=%3Cproquest_cross%3E1722180870%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1717202857&rft_id=info:pmid/25903327&rfr_iscdi=true |