Loading…

in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells

Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part A 2015-11, Vol.103 (11), p.3419-3430
Main Authors: Castells-Sala, Cristina, Martínez-Ramos, Cristina, Vallés-Lluch, Ana, Monleón Pradas, Manuel, Semino, Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33
cites cdi_FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33
container_end_page 3430
container_issue 11
container_start_page 3419
container_title Journal of biomedical materials research. Part A
container_volume 103
creator Castells-Sala, Cristina
Martínez-Ramos, Cristina
Vallés-Lluch, Ana
Monleón Pradas, Manuel
Semino, Carlos
description Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue‐derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16‐I peptide gel in microporous poly(ethyl acrylate) polymers using two‐dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self‐assembling peptide RAD16‐I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16‐I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16‐I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3419–3430, 2015.
doi_str_mv 10.1002/jbm.a.35482
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753547994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722180870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33</originalsourceid><addsrcrecordid>eNqN0k1v1DAQBuAIgWgpnLgjS1yQUBbHH7FzbCtoQQWEVFRulhNPtl6cOLWdLf0__FC8pO2BA-rJlv3Mq7E1RfGywqsKY_Ju0w4rvaKcSfKo2K84JyVrav54t2dNSUlT7xXPYtxkXGNOnhZ7hDeYUiL2i992RFubgkcGtuD8NMCYkO9Ra70dJqfHFNGgDaB52h2D0zH5AYLtUOx033tnIrq26RJNMCWb4Roc6q1zdlyjCGDALPeX86BHFOe2m5Mewc8RaWMnHwElG-MMpcmx28yn4Ncw2uQD6sC5-Lx40msX4cXtelB8__D-_Pi0PPt68vH48KzsaixJ2RBcM4oZN11Ty7brOauJphhaaXqBoWs6I0nbi0ow1nKsDctecsw1rdqW0oPizZKbG7iaISY12LjrYGlXVYLnbxZNwx5ACakklgI_gGYoJG9kpq__oRs_hzG_eacEwURykdXbRXXBxxigV1Owgw43qsJqNxIqj4TS6u9IZP3qNnNuBzD39m4GMiALuLYObv6XpT4dfT68Sy2XIhsT_Lov0uGnqgUVXF18OVHs9PzixxEV6hv9A5P50uY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1717202857</pqid></control><display><type>article</type><title>in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Castells-Sala, Cristina ; Martínez-Ramos, Cristina ; Vallés-Lluch, Ana ; Monleón Pradas, Manuel ; Semino, Carlos</creator><creatorcontrib>Castells-Sala, Cristina ; Martínez-Ramos, Cristina ; Vallés-Lluch, Ana ; Monleón Pradas, Manuel ; Semino, Carlos</creatorcontrib><description>Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue‐derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16‐I peptide gel in microporous poly(ethyl acrylate) polymers using two‐dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self‐assembling peptide RAD16‐I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16‐I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16‐I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3419–3430, 2015.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35482</identifier><identifier>PMID: 25903327</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Acrylic Resins - pharmacology ; bioactive patch ; Biocompatibility ; Biocompatible Materials - pharmacology ; Biomaterials ; Biomedical materials ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Cells, Cultured ; Coating ; elastomeric membrane ; Gels - pharmacology ; Gene Expression Profiling ; Humans ; mesenchymal stem cells-like cells ; Microscopy, Confocal ; Peptides ; Peptides - pharmacology ; Polymers - pharmacology ; Prostheses and Implants ; Scaffolds ; self-assembling peptide ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - metabolism ; Strategy ; Subcutaneous Fat - cytology ; Surgical implants ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2015-11, Vol.103 (11), p.3419-3430</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33</citedby><cites>FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25903327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castells-Sala, Cristina</creatorcontrib><creatorcontrib>Martínez-Ramos, Cristina</creatorcontrib><creatorcontrib>Vallés-Lluch, Ana</creatorcontrib><creatorcontrib>Monleón Pradas, Manuel</creatorcontrib><creatorcontrib>Semino, Carlos</creatorcontrib><title>in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue‐derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16‐I peptide gel in microporous poly(ethyl acrylate) polymers using two‐dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self‐assembling peptide RAD16‐I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16‐I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16‐I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3419–3430, 2015.</description><subject>Acrylic Resins - pharmacology</subject><subject>bioactive patch</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Coating</subject><subject>elastomeric membrane</subject><subject>Gels - pharmacology</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>mesenchymal stem cells-like cells</subject><subject>Microscopy, Confocal</subject><subject>Peptides</subject><subject>Peptides - pharmacology</subject><subject>Polymers - pharmacology</subject><subject>Prostheses and Implants</subject><subject>Scaffolds</subject><subject>self-assembling peptide</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><subject>Strategy</subject><subject>Subcutaneous Fat - cytology</subject><subject>Surgical implants</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0k1v1DAQBuAIgWgpnLgjS1yQUBbHH7FzbCtoQQWEVFRulhNPtl6cOLWdLf0__FC8pO2BA-rJlv3Mq7E1RfGywqsKY_Ju0w4rvaKcSfKo2K84JyVrav54t2dNSUlT7xXPYtxkXGNOnhZ7hDeYUiL2i992RFubgkcGtuD8NMCYkO9Ra70dJqfHFNGgDaB52h2D0zH5AYLtUOx033tnIrq26RJNMCWb4Roc6q1zdlyjCGDALPeX86BHFOe2m5Mewc8RaWMnHwElG-MMpcmx28yn4Ncw2uQD6sC5-Lx40msX4cXtelB8__D-_Pi0PPt68vH48KzsaixJ2RBcM4oZN11Ty7brOauJphhaaXqBoWs6I0nbi0ow1nKsDctecsw1rdqW0oPizZKbG7iaISY12LjrYGlXVYLnbxZNwx5ACakklgI_gGYoJG9kpq__oRs_hzG_eacEwURykdXbRXXBxxigV1Owgw43qsJqNxIqj4TS6u9IZP3qNnNuBzD39m4GMiALuLYObv6XpT4dfT68Sy2XIhsT_Lov0uGnqgUVXF18OVHs9PzixxEV6hv9A5P50uY</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Castells-Sala, Cristina</creator><creator>Martínez-Ramos, Cristina</creator><creator>Vallés-Lluch, Ana</creator><creator>Monleón Pradas, Manuel</creator><creator>Semino, Carlos</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201511</creationdate><title>in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells</title><author>Castells-Sala, Cristina ; Martínez-Ramos, Cristina ; Vallés-Lluch, Ana ; Monleón Pradas, Manuel ; Semino, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acrylic Resins - pharmacology</topic><topic>bioactive patch</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Coating</topic><topic>elastomeric membrane</topic><topic>Gels - pharmacology</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>mesenchymal stem cells-like cells</topic><topic>Microscopy, Confocal</topic><topic>Peptides</topic><topic>Peptides - pharmacology</topic><topic>Polymers - pharmacology</topic><topic>Prostheses and Implants</topic><topic>Scaffolds</topic><topic>self-assembling peptide</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><topic>Strategy</topic><topic>Subcutaneous Fat - cytology</topic><topic>Surgical implants</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castells-Sala, Cristina</creatorcontrib><creatorcontrib>Martínez-Ramos, Cristina</creatorcontrib><creatorcontrib>Vallés-Lluch, Ana</creatorcontrib><creatorcontrib>Monleón Pradas, Manuel</creatorcontrib><creatorcontrib>Semino, Carlos</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castells-Sala, Cristina</au><au>Martínez-Ramos, Cristina</au><au>Vallés-Lluch, Ana</au><au>Monleón Pradas, Manuel</au><au>Semino, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2015-11</date><risdate>2015</risdate><volume>103</volume><issue>11</issue><spage>3419</spage><epage>3430</epage><pages>3419-3430</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue‐derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16‐I peptide gel in microporous poly(ethyl acrylate) polymers using two‐dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self‐assembling peptide RAD16‐I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16‐I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16‐I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3419–3430, 2015.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25903327</pmid><doi>10.1002/jbm.a.35482</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2015-11, Vol.103 (11), p.3419-3430
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1753547994
source Wiley-Blackwell Read & Publish Collection
subjects Acrylic Resins - pharmacology
bioactive patch
Biocompatibility
Biocompatible Materials - pharmacology
Biomaterials
Biomedical materials
Cell Proliferation - drug effects
Cell Survival - drug effects
Cells, Cultured
Coating
elastomeric membrane
Gels - pharmacology
Gene Expression Profiling
Humans
mesenchymal stem cells-like cells
Microscopy, Confocal
Peptides
Peptides - pharmacology
Polymers - pharmacology
Prostheses and Implants
Scaffolds
self-assembling peptide
Stem Cells - cytology
Stem Cells - drug effects
Stem Cells - metabolism
Strategy
Subcutaneous Fat - cytology
Surgical implants
Tissue Scaffolds - chemistry
title in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=in%20vitro%20development%20of%20bioimplants%20made%20up%20of%20elastomeric%20scaffolds%20with%20peptide%20gel%20filling%20seeded%20with%20human%20subcutaneous%20adipose%20tissue-derived%20progenitor%20cells&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Castells-Sala,%20Cristina&rft.date=2015-11&rft.volume=103&rft.issue=11&rft.spage=3419&rft.epage=3430&rft.pages=3419-3430&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35482&rft_dat=%3Cproquest_cross%3E1722180870%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6082-920643045dc968bcf5462a30eb8df70ec9cd82bf71744b50ad46438505a31bb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1717202857&rft_id=info:pmid/25903327&rfr_iscdi=true