Loading…
A unified charge-based model for SOI MOSFETs applicable from intrinsic to heavily doped channel
A unified charge-based model for fully depleted silicon-on-insulator (SOI) metal oxide semiconductor field-effect transistors (MOSFETs) is presented. The proposed model is accurate and applicable from intrinsic to heavily doped channels with various structure parameters. The framework starts from th...
Saved in:
Published in: | Chinese physics B 2012-04, Vol.21 (4), p.478-485, Article 047303 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A unified charge-based model for fully depleted silicon-on-insulator (SOI) metal oxide semiconductor field-effect transistors (MOSFETs) is presented. The proposed model is accurate and applicable from intrinsic to heavily doped channels with various structure parameters. The framework starts from the one-dimensional Poisson Boltzmann equa- tion, and based on the full depletion approximation, an accurate inversion charge density equation is obtained. With the inversion charge density solution, the unified drain current expression is derived, and a unified terminal charge and intrinsic capacitance model is also derived in the quasi-static case. The validity and accuracy of the presented analytic model is proved by numerical simulations. |
---|---|
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/4/047303 |