Loading…
A theoretical study on decomposition of carbon tetrachloride, trichloroethylene and ethyl chloride in dry air under the influence of an electron beam
New experimental data were published in literature regarding CCl4, C2HCl3 and C2H5Cl decomposition in dry air under electron beam influence. Taking into account experimental data theoretical models of those species decomposition were established and computer simulations were performed by the authors...
Saved in:
Published in: | Radiation physics and chemistry (Oxford, England : 1993) England : 1993), 2000-03, Vol.57 (3-6), p.519-525 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | New experimental data were published in literature regarding CCl4, C2HCl3 and C2H5Cl decomposition in dry air under electron beam influence. Taking into account experimental data theoretical models of those species decomposition were established and computer simulations were performed by the authors of this work to find the kinetics of such processes. The results of the calculations and experimental data show that CCl4 decomposition depends on delivered dose and initial CCl4 concentrations. The calculation revealed that recombination of CCl+4 and Cl− is the source of CCl3 radicals and that reaction may have an important role in the process of CCl4 decomposition. A theoretical model of C2HCl3 decomposition in dry air under electron beam influence describes the decay of C2HCl3 and the formation of several products such as Cl2, CCl2O, CO, CO2, HCl and C2HCl3O. The detailed comparison of experimental and theoretical data shows relatively good agreement in efficiency of C2HCl3 decomposition process, but it can be achieved only with an assumption that the relation between rate constants of C2HCl4O intermediate product decomposition (C2HCl3O+Cl and COCl2+CHCl2) should be around 20 and C2HCl3O oxidation rate should be not lower than 7.5×10−11 cm3/mols. All those rate constants are not yet established experimentally. The results of the calculation of C2H5Cl decomposition and the data obtained experimentally were compared. The temperature, gas pressure, initial C2H5Cl concentration and dose range were equal in both cases. An elaborated model allow us to obtain quantitatively similar results as the experiments, but the degree of C2H5Cl decomposition for certain dose levels is significantly higher in experimental data. It is quite probable that some important processes have not been included to the theoretical model. |
---|---|
ISSN: | 0969-806X 1879-0895 |
DOI: | 10.1016/S0969-806X(99)00454-5 |