Loading…

Simulation of the damage to a simple RC structure in the Bhuj, India, earthquake to estimate the level of input-motion

Analysis of a simple reinforced concrete (RC) structure damaged by the Bhuj, India, earthquake was carried out to estimate the level of shaking in the epicentral region. For this, an attempt was made to estimate the level of input motion to cause inelastic behavior to the extent observed during the...

Full description

Saved in:
Bibliographic Details
Published in:Earthquake engineering & structural dynamics 2005-07, Vol.34 (9), p.1109-1127
Main Authors: Sunuwar, Laxman, Karkee, Madan B., Cuadra, Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analysis of a simple reinforced concrete (RC) structure damaged by the Bhuj, India, earthquake was carried out to estimate the level of shaking in the epicentral region. For this, an attempt was made to estimate the level of input motion to cause inelastic behavior to the extent observed during the field visit. To consider the inelastic effects, both yielding of steel bars as well as crushing of the concrete cover has been investigated employing the hysteretic model known as the Fiber model. The only available record at Ahmedabad of the Bhuj earthquake and four additional earthquake records from Japan and California were used in the analysis. Considering simple scaling of input motion, the level of input motion to cause crushing and spall‐off of the concrete cover as observed in the field was estimated to be of the order of 6 times the original instrumental record obtained at 240 km away from the epicenter. The methodology proposed was promising in providing a useful quantitative indication of the level of shaking when instrumental records are not available. It was also noted that the design response spectrum specified in Indian seismic code IS1893: 1984 appears inadequate compared to the extent of shaking estimated. Copyright © 2005 John Wiley & Sons, Ltd.
ISSN:0098-8847
1096-9845
DOI:10.1002/eqe.470