Loading…

Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau

Aim: Our aims were to quantify climatic and soil controls on net primary productivity (NPP) and leaf area index (LAI) along subtropical to alpine gradients where the vegetation remains relatively undisturbed, and investigate whether NPP and LAI converge towards threshold-like logistic patterns assoc...

Full description

Saved in:
Bibliographic Details
Published in:Global ecology and biogeography 2004-07, Vol.13 (4), p.345-358
Main Authors: Luo, Tianxiang, Pan, Yude, Ouyang, Hua, Shi, Peili, Luo, Ji, Yu, Zhenliang, Lu, Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aim: Our aims were to quantify climatic and soil controls on net primary productivity (NPP) and leaf area index (LAI) along subtropical to alpine gradients where the vegetation remains relatively undisturbed, and investigate whether NPP and LAI converge towards threshold-like logistic patterns associated with climatic and soil variables that would help us to verify and parameterize process models for predicting future ecosystem behaviour under global environmental change. Location: Field data were collected from 22 sites along the Tibetan Alpine Vegetation Transects (TAVT) during 1999-2000. The TAVT included the altitudinal transect on the eastern slope of the Gongga Mountains in the Eastern Tibetan Plateau, with altitudes from 1900 m to 3700 m, and the longitudinal-latitudinal transect in the Central Tibetan Plateau, of approximately 1000 km length and 40 km width. Methods: LAI was measured as the product of foliage biomass multiplied by the ratio of specific leaf area. NPP in forests and shrub communities was estimated as the sum of increases in standing crops of live vegetation using recent stem growth rate and leaf lifespan. NPP in grasslands was estimated from the above-ground maximum live biomass. We measured the soil organic carbon (C) and total and available nitrogen (N) contents and their pool sizes by conventional methods. Mean temperatures for the year, January and July and annual precipitation were estimated from available meteorological stations by interpolation or simulation. The threshold-like logistic function was used to model the relationships of LAI and NPP with climatic and soil variables. Results: Geographically, NPP and LAI both significantly decreased with increasing latitude (P < 0.02), but increased with increasing longitude (P < 0.01). Altitudinal trends in NPP and LAI showed different patterns. NPP generally decreased with increasing altitude in a linear relationship (r2= 0.73, P < 0.001), whereas LAI showed a negative quadratic relationship with altitude (r2= 0.58, P < 0.001). Temperature and precipitation, singly or in combination, explained 60-68% of the NPP variation with logistic relationships, while the soil organic C and total N variables explained only 21-46% of the variation with simple linear regressions of log-transformed data. LAI showed significant logistic relationships with both climatic and soil variables, but the data from alpine spruce-fir sites diverged greatly from the modelled patterns associated with tempera
ISSN:1466-822X
1466-8238
1466-822X
DOI:10.1111/j.1466-822X.2004.00094.x