Loading…

Adaptations of wild populations of the estuarine fish Fundulus heteroclitus to persistent environmental contaminants

Many aquatic species, including the estuarine fish Fundulus heteroclitus (mummichogs), adapt to local environmental conditions. We conducted studies to evaluate whether highly exposed populations of mummichogs adapt to toxic environmental contaminants. These fish populations are indigenous to an urb...

Full description

Saved in:
Bibliographic Details
Published in:Marine biology 1999-06, Vol.134 (1), p.9-17
Main Authors: NACCI, D, COIRO, L, CBAMPLIN, D, JAYARAMAN, S, MCKINNEY, R, GLEASON, T. R, MUNNS, W. R, SPECKER, J. L, COOPER, K. R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many aquatic species, including the estuarine fish Fundulus heteroclitus (mummichogs), adapt to local environmental conditions. We conducted studies to evaluate whether highly exposed populations of mummichogs adapt to toxic environmental contaminants. These fish populations are indigenous to an urban estuary contaminated with persistent and bioaccumulative contaminants (dioxin-like compounds, or DLCs) that are particularly toxic to the early development of fish. We conducted laboratory challenge experiments to compare mummichog embryos and larvae from reference sites and this highly contaminated site [New Bedford Harbor (NBH), Massachusetts, USA] for their sensitivity to DLCs. While there was variation in DLC-responsiveness within each group, fish from NBH were profoundly less sensitive to DLCs than reference fish. Specifically, concentrations of DLCs similar to those measured in NBH-collected mummichog eggs were lethal to reference embryos. Further, DLC-responsiveness was inherited and independent of maternal contaminant contributions. These findings are consistent with the conclusion that DLC contamination in NBH has contributed to the selection of fish that are resistant to the short-term toxic effects of these environmental-contaminant exposures. This adaptation may be a critical mechanism by which fish populations persist in this highly contaminated site. Further evaluation of this ecosystem may provide important information concerning the direct and indirect consequences of this "unnatural" selection.
ISSN:0025-3162
1432-1793
DOI:10.1007/s002270050520