Loading…
A review on the role of proton exchange membrane on the performance of microbial fuel cell
Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generat...
Saved in:
Published in: | Polymers for advanced technologies 2014-12, Vol.25 (12), p.1426-1432 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5713-dc0cca0a263115aece6e3ab9d9bcb85618ae88d6b663d9a2fba18837e47de85a3 |
---|---|
cites | |
container_end_page | 1432 |
container_issue | 12 |
container_start_page | 1426 |
container_title | Polymers for advanced technologies |
container_volume | 25 |
creator | Rahimnejad, Mostafa Bakeri, Gholamreza Ghasemi, Mostafa Zirepour, Alireza |
description | Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generated power density and coulombic efficiency. Nafion is the commonly used membrane in MFCs, but there are still a number of problems associated with the use of Nafion including oxygen transfer rate, cation transport and accumulation rather than protons, membrane fouling and substrate loss. Moreover, additional problems can also be attributed to the effect of PEMs including internal resistance and pH change in MFCs. Recent developments in PEM performance are attributed to two categories including utilization of other types of membranes and improvements in Nafion by pre‐treatment methods. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/pat.3383 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1758239371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651417163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5713-dc0cca0a263115aece6e3ab9d9bcb85618ae88d6b663d9a2fba18837e47de85a3</originalsourceid><addsrcrecordid>eNqF0UtLJDEQB_BmUVhfsB8hsAheWlOd6TyOo-goqOtBWfASqtPVa2s_xqRHnW9v2scIXvZUIfUjqeSfJL-A7wPn2cEch30htPiRbAA3JoVcw9q4nmSpgon6mWyGcM957Bm1kdxOmaenmp5Z37HhjpjvG2J9xea-H-IWvbg77P4Ra6ktPHb06ebkq9632Lk33tbO90WNDasW1DBHTbOdrFfYBNr5qFvJzcnx9dFpev5ndnY0PU9drkCkpePOIcdMCoAcyZEkgYUpTeEKnUvQSFqXspBSlAazqkDQWiiaqJJ0jmIr2Xs_N478uKAw2LYO4wBx2n4RLKhcZ8KIeNl_qcxhAgqkiPT3N3rfL3wXHxJVpsDICKPa_VAYHDZV_CFXBzv3dYt-aTNtYhRGRpe-u-e6oeWqD9yOodkYmh1Ds1fT67F--ToM9LLy6B-sVELl9u_lzF7dHl7OTi7AHopXk6eZxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627196417</pqid></control><display><type>article</type><title>A review on the role of proton exchange membrane on the performance of microbial fuel cell</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Rahimnejad, Mostafa ; Bakeri, Gholamreza ; Ghasemi, Mostafa ; Zirepour, Alireza</creator><creatorcontrib>Rahimnejad, Mostafa ; Bakeri, Gholamreza ; Ghasemi, Mostafa ; Zirepour, Alireza</creatorcontrib><description>Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generated power density and coulombic efficiency. Nafion is the commonly used membrane in MFCs, but there are still a number of problems associated with the use of Nafion including oxygen transfer rate, cation transport and accumulation rather than protons, membrane fouling and substrate loss. Moreover, additional problems can also be attributed to the effect of PEMs including internal resistance and pH change in MFCs. Recent developments in PEM performance are attributed to two categories including utilization of other types of membranes and improvements in Nafion by pre‐treatment methods. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.3383</identifier><identifier>CODEN: PADTE5</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Biochemical fuel cells ; Categories ; coulombic efficiency ; Density ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Exchange ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Fuel cells ; microbial fuel cells ; Microorganisms ; Nafion ; Oxygen transfer ; Polymer industry, paints, wood ; Proton exchange membrane fuel cells ; proton exchange membranes ; Technology of polymers ; Transportation</subject><ispartof>Polymers for advanced technologies, 2014-12, Vol.25 (12), p.1426-1432</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5713-dc0cca0a263115aece6e3ab9d9bcb85618ae88d6b663d9a2fba18837e47de85a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28938396$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahimnejad, Mostafa</creatorcontrib><creatorcontrib>Bakeri, Gholamreza</creatorcontrib><creatorcontrib>Ghasemi, Mostafa</creatorcontrib><creatorcontrib>Zirepour, Alireza</creatorcontrib><title>A review on the role of proton exchange membrane on the performance of microbial fuel cell</title><title>Polymers for advanced technologies</title><addtitle>Polym. Adv. Technol</addtitle><description>Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generated power density and coulombic efficiency. Nafion is the commonly used membrane in MFCs, but there are still a number of problems associated with the use of Nafion including oxygen transfer rate, cation transport and accumulation rather than protons, membrane fouling and substrate loss. Moreover, additional problems can also be attributed to the effect of PEMs including internal resistance and pH change in MFCs. Recent developments in PEM performance are attributed to two categories including utilization of other types of membranes and improvements in Nafion by pre‐treatment methods. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>Applied sciences</subject><subject>Biochemical fuel cells</subject><subject>Categories</subject><subject>coulombic efficiency</subject><subject>Density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Exchange</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Fuel cells</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>Nafion</subject><subject>Oxygen transfer</subject><subject>Polymer industry, paints, wood</subject><subject>Proton exchange membrane fuel cells</subject><subject>proton exchange membranes</subject><subject>Technology of polymers</subject><subject>Transportation</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLJDEQB_BmUVhfsB8hsAheWlOd6TyOo-goqOtBWfASqtPVa2s_xqRHnW9v2scIXvZUIfUjqeSfJL-A7wPn2cEch30htPiRbAA3JoVcw9q4nmSpgon6mWyGcM957Bm1kdxOmaenmp5Z37HhjpjvG2J9xea-H-IWvbg77P4Ra6ktPHb06ebkq9632Lk33tbO90WNDasW1DBHTbOdrFfYBNr5qFvJzcnx9dFpev5ndnY0PU9drkCkpePOIcdMCoAcyZEkgYUpTeEKnUvQSFqXspBSlAazqkDQWiiaqJJ0jmIr2Xs_N478uKAw2LYO4wBx2n4RLKhcZ8KIeNl_qcxhAgqkiPT3N3rfL3wXHxJVpsDICKPa_VAYHDZV_CFXBzv3dYt-aTNtYhRGRpe-u-e6oeWqD9yOodkYmh1Ds1fT67F--ToM9LLy6B-sVELl9u_lzF7dHl7OTi7AHopXk6eZxA</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Rahimnejad, Mostafa</creator><creator>Bakeri, Gholamreza</creator><creator>Ghasemi, Mostafa</creator><creator>Zirepour, Alireza</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7T7</scope><scope>C1K</scope><scope>P64</scope></search><sort><creationdate>201412</creationdate><title>A review on the role of proton exchange membrane on the performance of microbial fuel cell</title><author>Rahimnejad, Mostafa ; Bakeri, Gholamreza ; Ghasemi, Mostafa ; Zirepour, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5713-dc0cca0a263115aece6e3ab9d9bcb85618ae88d6b663d9a2fba18837e47de85a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Biochemical fuel cells</topic><topic>Categories</topic><topic>coulombic efficiency</topic><topic>Density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Exchange</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Fuel cells</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>Nafion</topic><topic>Oxygen transfer</topic><topic>Polymer industry, paints, wood</topic><topic>Proton exchange membrane fuel cells</topic><topic>proton exchange membranes</topic><topic>Technology of polymers</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahimnejad, Mostafa</creatorcontrib><creatorcontrib>Bakeri, Gholamreza</creatorcontrib><creatorcontrib>Ghasemi, Mostafa</creatorcontrib><creatorcontrib>Zirepour, Alireza</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahimnejad, Mostafa</au><au>Bakeri, Gholamreza</au><au>Ghasemi, Mostafa</au><au>Zirepour, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on the role of proton exchange membrane on the performance of microbial fuel cell</atitle><jtitle>Polymers for advanced technologies</jtitle><addtitle>Polym. Adv. Technol</addtitle><date>2014-12</date><risdate>2014</risdate><volume>25</volume><issue>12</issue><spage>1426</spage><epage>1432</epage><pages>1426-1432</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><coden>PADTE5</coden><abstract>Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generated power density and coulombic efficiency. Nafion is the commonly used membrane in MFCs, but there are still a number of problems associated with the use of Nafion including oxygen transfer rate, cation transport and accumulation rather than protons, membrane fouling and substrate loss. Moreover, additional problems can also be attributed to the effect of PEMs including internal resistance and pH change in MFCs. Recent developments in PEM performance are attributed to two categories including utilization of other types of membranes and improvements in Nafion by pre‐treatment methods. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pat.3383</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-7147 |
ispartof | Polymers for advanced technologies, 2014-12, Vol.25 (12), p.1426-1432 |
issn | 1042-7147 1099-1581 |
language | eng |
recordid | cdi_proquest_miscellaneous_1758239371 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Applied sciences Biochemical fuel cells Categories coulombic efficiency Density Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Exchange Exchange resins and membranes Forms of application and semi-finished materials Fuel cells microbial fuel cells Microorganisms Nafion Oxygen transfer Polymer industry, paints, wood Proton exchange membrane fuel cells proton exchange membranes Technology of polymers Transportation |
title | A review on the role of proton exchange membrane on the performance of microbial fuel cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20the%20role%20of%20proton%20exchange%20membrane%20on%20the%20performance%20of%20microbial%20fuel%20cell&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Rahimnejad,%20Mostafa&rft.date=2014-12&rft.volume=25&rft.issue=12&rft.spage=1426&rft.epage=1432&rft.pages=1426-1432&rft.issn=1042-7147&rft.eissn=1099-1581&rft.coden=PADTE5&rft_id=info:doi/10.1002/pat.3383&rft_dat=%3Cproquest_pasca%3E1651417163%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5713-dc0cca0a263115aece6e3ab9d9bcb85618ae88d6b663d9a2fba18837e47de85a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1627196417&rft_id=info:pmid/&rfr_iscdi=true |