Loading…

A review on the role of proton exchange membrane on the performance of microbial fuel cell

Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generat...

Full description

Saved in:
Bibliographic Details
Published in:Polymers for advanced technologies 2014-12, Vol.25 (12), p.1426-1432
Main Authors: Rahimnejad, Mostafa, Bakeri, Gholamreza, Ghasemi, Mostafa, Zirepour, Alireza
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5713-dc0cca0a263115aece6e3ab9d9bcb85618ae88d6b663d9a2fba18837e47de85a3
cites
container_end_page 1432
container_issue 12
container_start_page 1426
container_title Polymers for advanced technologies
container_volume 25
creator Rahimnejad, Mostafa
Bakeri, Gholamreza
Ghasemi, Mostafa
Zirepour, Alireza
description Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generated power density and coulombic efficiency. Nafion is the commonly used membrane in MFCs, but there are still a number of problems associated with the use of Nafion including oxygen transfer rate, cation transport and accumulation rather than protons, membrane fouling and substrate loss. Moreover, additional problems can also be attributed to the effect of PEMs including internal resistance and pH change in MFCs. Recent developments in PEM performance are attributed to two categories including utilization of other types of membranes and improvements in Nafion by pre‐treatment methods. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/pat.3383
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1758239371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651417163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5713-dc0cca0a263115aece6e3ab9d9bcb85618ae88d6b663d9a2fba18837e47de85a3</originalsourceid><addsrcrecordid>eNqF0UtLJDEQB_BmUVhfsB8hsAheWlOd6TyOo-goqOtBWfASqtPVa2s_xqRHnW9v2scIXvZUIfUjqeSfJL-A7wPn2cEch30htPiRbAA3JoVcw9q4nmSpgon6mWyGcM957Bm1kdxOmaenmp5Z37HhjpjvG2J9xea-H-IWvbg77P4Ra6ktPHb06ebkq9632Lk33tbO90WNDasW1DBHTbOdrFfYBNr5qFvJzcnx9dFpev5ndnY0PU9drkCkpePOIcdMCoAcyZEkgYUpTeEKnUvQSFqXspBSlAazqkDQWiiaqJJ0jmIr2Xs_N478uKAw2LYO4wBx2n4RLKhcZ8KIeNl_qcxhAgqkiPT3N3rfL3wXHxJVpsDICKPa_VAYHDZV_CFXBzv3dYt-aTNtYhRGRpe-u-e6oeWqD9yOodkYmh1Ds1fT67F--ToM9LLy6B-sVELl9u_lzF7dHl7OTi7AHopXk6eZxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627196417</pqid></control><display><type>article</type><title>A review on the role of proton exchange membrane on the performance of microbial fuel cell</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Rahimnejad, Mostafa ; Bakeri, Gholamreza ; Ghasemi, Mostafa ; Zirepour, Alireza</creator><creatorcontrib>Rahimnejad, Mostafa ; Bakeri, Gholamreza ; Ghasemi, Mostafa ; Zirepour, Alireza</creatorcontrib><description>Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generated power density and coulombic efficiency. Nafion is the commonly used membrane in MFCs, but there are still a number of problems associated with the use of Nafion including oxygen transfer rate, cation transport and accumulation rather than protons, membrane fouling and substrate loss. Moreover, additional problems can also be attributed to the effect of PEMs including internal resistance and pH change in MFCs. Recent developments in PEM performance are attributed to two categories including utilization of other types of membranes and improvements in Nafion by pre‐treatment methods. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.3383</identifier><identifier>CODEN: PADTE5</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Biochemical fuel cells ; Categories ; coulombic efficiency ; Density ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Exchange ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Fuel cells ; microbial fuel cells ; Microorganisms ; Nafion ; Oxygen transfer ; Polymer industry, paints, wood ; Proton exchange membrane fuel cells ; proton exchange membranes ; Technology of polymers ; Transportation</subject><ispartof>Polymers for advanced technologies, 2014-12, Vol.25 (12), p.1426-1432</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5713-dc0cca0a263115aece6e3ab9d9bcb85618ae88d6b663d9a2fba18837e47de85a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28938396$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahimnejad, Mostafa</creatorcontrib><creatorcontrib>Bakeri, Gholamreza</creatorcontrib><creatorcontrib>Ghasemi, Mostafa</creatorcontrib><creatorcontrib>Zirepour, Alireza</creatorcontrib><title>A review on the role of proton exchange membrane on the performance of microbial fuel cell</title><title>Polymers for advanced technologies</title><addtitle>Polym. Adv. Technol</addtitle><description>Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generated power density and coulombic efficiency. Nafion is the commonly used membrane in MFCs, but there are still a number of problems associated with the use of Nafion including oxygen transfer rate, cation transport and accumulation rather than protons, membrane fouling and substrate loss. Moreover, additional problems can also be attributed to the effect of PEMs including internal resistance and pH change in MFCs. Recent developments in PEM performance are attributed to two categories including utilization of other types of membranes and improvements in Nafion by pre‐treatment methods. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>Applied sciences</subject><subject>Biochemical fuel cells</subject><subject>Categories</subject><subject>coulombic efficiency</subject><subject>Density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Exchange</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Fuel cells</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>Nafion</subject><subject>Oxygen transfer</subject><subject>Polymer industry, paints, wood</subject><subject>Proton exchange membrane fuel cells</subject><subject>proton exchange membranes</subject><subject>Technology of polymers</subject><subject>Transportation</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLJDEQB_BmUVhfsB8hsAheWlOd6TyOo-goqOtBWfASqtPVa2s_xqRHnW9v2scIXvZUIfUjqeSfJL-A7wPn2cEch30htPiRbAA3JoVcw9q4nmSpgon6mWyGcM957Bm1kdxOmaenmp5Z37HhjpjvG2J9xea-H-IWvbg77P4Ra6ktPHb06ebkq9632Lk33tbO90WNDasW1DBHTbOdrFfYBNr5qFvJzcnx9dFpev5ndnY0PU9drkCkpePOIcdMCoAcyZEkgYUpTeEKnUvQSFqXspBSlAazqkDQWiiaqJJ0jmIr2Xs_N478uKAw2LYO4wBx2n4RLKhcZ8KIeNl_qcxhAgqkiPT3N3rfL3wXHxJVpsDICKPa_VAYHDZV_CFXBzv3dYt-aTNtYhRGRpe-u-e6oeWqD9yOodkYmh1Ds1fT67F--ToM9LLy6B-sVELl9u_lzF7dHl7OTi7AHopXk6eZxA</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Rahimnejad, Mostafa</creator><creator>Bakeri, Gholamreza</creator><creator>Ghasemi, Mostafa</creator><creator>Zirepour, Alireza</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7T7</scope><scope>C1K</scope><scope>P64</scope></search><sort><creationdate>201412</creationdate><title>A review on the role of proton exchange membrane on the performance of microbial fuel cell</title><author>Rahimnejad, Mostafa ; Bakeri, Gholamreza ; Ghasemi, Mostafa ; Zirepour, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5713-dc0cca0a263115aece6e3ab9d9bcb85618ae88d6b663d9a2fba18837e47de85a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Biochemical fuel cells</topic><topic>Categories</topic><topic>coulombic efficiency</topic><topic>Density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Exchange</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Fuel cells</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>Nafion</topic><topic>Oxygen transfer</topic><topic>Polymer industry, paints, wood</topic><topic>Proton exchange membrane fuel cells</topic><topic>proton exchange membranes</topic><topic>Technology of polymers</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahimnejad, Mostafa</creatorcontrib><creatorcontrib>Bakeri, Gholamreza</creatorcontrib><creatorcontrib>Ghasemi, Mostafa</creatorcontrib><creatorcontrib>Zirepour, Alireza</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahimnejad, Mostafa</au><au>Bakeri, Gholamreza</au><au>Ghasemi, Mostafa</au><au>Zirepour, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on the role of proton exchange membrane on the performance of microbial fuel cell</atitle><jtitle>Polymers for advanced technologies</jtitle><addtitle>Polym. Adv. Technol</addtitle><date>2014-12</date><risdate>2014</risdate><volume>25</volume><issue>12</issue><spage>1426</spage><epage>1432</epage><pages>1426-1432</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><coden>PADTE5</coden><abstract>Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generated power density and coulombic efficiency. Nafion is the commonly used membrane in MFCs, but there are still a number of problems associated with the use of Nafion including oxygen transfer rate, cation transport and accumulation rather than protons, membrane fouling and substrate loss. Moreover, additional problems can also be attributed to the effect of PEMs including internal resistance and pH change in MFCs. Recent developments in PEM performance are attributed to two categories including utilization of other types of membranes and improvements in Nafion by pre‐treatment methods. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pat.3383</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1042-7147
ispartof Polymers for advanced technologies, 2014-12, Vol.25 (12), p.1426-1432
issn 1042-7147
1099-1581
language eng
recordid cdi_proquest_miscellaneous_1758239371
source Wiley-Blackwell Read & Publish Collection
subjects Applied sciences
Biochemical fuel cells
Categories
coulombic efficiency
Density
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Exchange
Exchange resins and membranes
Forms of application and semi-finished materials
Fuel cells
microbial fuel cells
Microorganisms
Nafion
Oxygen transfer
Polymer industry, paints, wood
Proton exchange membrane fuel cells
proton exchange membranes
Technology of polymers
Transportation
title A review on the role of proton exchange membrane on the performance of microbial fuel cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20the%20role%20of%20proton%20exchange%20membrane%20on%20the%20performance%20of%20microbial%20fuel%20cell&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Rahimnejad,%20Mostafa&rft.date=2014-12&rft.volume=25&rft.issue=12&rft.spage=1426&rft.epage=1432&rft.pages=1426-1432&rft.issn=1042-7147&rft.eissn=1099-1581&rft.coden=PADTE5&rft_id=info:doi/10.1002/pat.3383&rft_dat=%3Cproquest_pasca%3E1651417163%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5713-dc0cca0a263115aece6e3ab9d9bcb85618ae88d6b663d9a2fba18837e47de85a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1627196417&rft_id=info:pmid/&rfr_iscdi=true