Loading…

Laser micro-patterning of biodegradable polymer blends for tissue engineering

We propose a multistep all laser, maskless, and solvent free synthesis of micro-patterned substrates of biodegradable polymer blends, with applicability for guided cell adhesion and localized hyaluronic acid (HA) immobilization. The polymer blends comprised polyurethane (PU), poly(lactic-co-glycolic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2015-01, Vol.50 (2), p.923-936
Main Authors: Paun, Irina Alexandra, Zamfirescu, Marian, Mihailescu, Mona, Luculescu, Catalin Romeo, Mustaciosu, Cosmin Catalin, Dorobantu, Ion, Calenic, Bogdan, Dinescu, Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113
cites cdi_FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113
container_end_page 936
container_issue 2
container_start_page 923
container_title Journal of materials science
container_volume 50
creator Paun, Irina Alexandra
Zamfirescu, Marian
Mihailescu, Mona
Luculescu, Catalin Romeo
Mustaciosu, Cosmin Catalin
Dorobantu, Ion
Calenic, Bogdan
Dinescu, Maria
description We propose a multistep all laser, maskless, and solvent free synthesis of micro-patterned substrates of biodegradable polymer blends, with applicability for guided cell adhesion and localized hyaluronic acid (HA) immobilization. The polymer blends comprised polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), and polylactide-polyethylene glycol-polylactide (PPP) in 1:1:1 blending ratios. Polymer patterning was performed by laser processing in two steps. First, the polymers were patterned with periodic micro-channels by direct femtosecond laser ablation, which provided flexibility in design and spatial accuracy for the patterns. As a second step, the micro-patterned polymers were coated with thin layers of polymer blends using matrix assisted pulsed laser evaporation (MAPLE). The resulted sandwich substrates were composed of a bottom, micro-patterned layer and thin, top layer which conserved the patterns from the underlying layer and preserved the polymers chemical composition. Depending on the bottom/top layers, the substrates were denominated PU/PU:PLGA:PPP and PU:PLGA:PPP/PU:PLGA:PPP, respectively. The laser generated micro-patterns were used for selective attachment of oral keratinocyte stem cells and for HA immobilization. The highest cellular density was found on the PU:PLGA:PPP/PU:PLGA:PPP substrate, where the spongy-like micro-channels provided multiple anchoring points for the cells. For both substrates, the micro-channels enabled localized immobilization of HA. The effectiveness of HA immobilization was tested against cell adhesion and protein adsorption.
doi_str_mv 10.1007/s10853-014-8652-y
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1758242159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A392479060</galeid><sourcerecordid>A392479060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113</originalsourceid><addsrcrecordid>eNqFkU2L1TAUQIMo-Bz9Ae4KbnSR8d60adPlMPgx8ETwYx2S9qZk6Etq0oLv35tHBRlBJIuEcE5Ichh7iXCNAN3bjKBkzQEbrlop-PkRO6Dsat4oqB-zA4AQXDQtPmXPcr4HANkJPLBPR5MpVSc_pMgXs66Ugg9TFV1lfRxpSmY0dqZqifP5VMiyDmOuXEzV6nPeqKIw-UCUivacPXFmzvTi93zFvr9_9-32Iz9-_nB3e3Pkg2zFyoV0jqgDVPVIppe2UWSlBePQumFA6GU7jj0ZrMd2HAYSnQVrG7QKUCLWV-z1fu6S4o-N8qpPPg80zyZQ3LLGTirRCJT9_9FWYiM62cuCvvoLvY9bCuUhuhymhIJe1YW63qnJzKR9cHFNZihjpPKLMZDzZf-m7kXT9dBCEd48EAqz0s91MlvO-u7rl4cs7mzJkXMip5fkTyadNYK-hNZ7aF1C60tofS6O2J28XBpQ-nPtf0u_ADQ7qp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428280983</pqid></control><display><type>article</type><title>Laser micro-patterning of biodegradable polymer blends for tissue engineering</title><source>Springer Nature</source><creator>Paun, Irina Alexandra ; Zamfirescu, Marian ; Mihailescu, Mona ; Luculescu, Catalin Romeo ; Mustaciosu, Cosmin Catalin ; Dorobantu, Ion ; Calenic, Bogdan ; Dinescu, Maria</creator><creatorcontrib>Paun, Irina Alexandra ; Zamfirescu, Marian ; Mihailescu, Mona ; Luculescu, Catalin Romeo ; Mustaciosu, Cosmin Catalin ; Dorobantu, Ion ; Calenic, Bogdan ; Dinescu, Maria</creatorcontrib><description>We propose a multistep all laser, maskless, and solvent free synthesis of micro-patterned substrates of biodegradable polymer blends, with applicability for guided cell adhesion and localized hyaluronic acid (HA) immobilization. The polymer blends comprised polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), and polylactide-polyethylene glycol-polylactide (PPP) in 1:1:1 blending ratios. Polymer patterning was performed by laser processing in two steps. First, the polymers were patterned with periodic micro-channels by direct femtosecond laser ablation, which provided flexibility in design and spatial accuracy for the patterns. As a second step, the micro-patterned polymers were coated with thin layers of polymer blends using matrix assisted pulsed laser evaporation (MAPLE). The resulted sandwich substrates were composed of a bottom, micro-patterned layer and thin, top layer which conserved the patterns from the underlying layer and preserved the polymers chemical composition. Depending on the bottom/top layers, the substrates were denominated PU/PU:PLGA:PPP and PU:PLGA:PPP/PU:PLGA:PPP, respectively. The laser generated micro-patterns were used for selective attachment of oral keratinocyte stem cells and for HA immobilization. The highest cellular density was found on the PU:PLGA:PPP/PU:PLGA:PPP substrate, where the spongy-like micro-channels provided multiple anchoring points for the cells. For both substrates, the micro-channels enabled localized immobilization of HA. The effectiveness of HA immobilization was tested against cell adhesion and protein adsorption.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-014-8652-y</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Adhesion tests ; Anchoring ; Biodegradability ; Biodegradable materials ; Cell adhesion ; Cell adhesion &amp; migration ; Characterization and Evaluation of Materials ; Chemical composition ; Chemical synthesis ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Femtosecond pulsed lasers ; Glycolic acid ; Hyaluronic acid ; Hydroxyapatite ; Immobilization ; Laser ablation ; Laser processing ; Lasers ; Materials Science ; Microchannels ; Original Paper ; Plutonium ; Polyethylene glycol ; Polymer blends ; Polymer industry ; Polymer Sciences ; Polyols ; Polyurethane resins ; Polyurethanes ; Protein adsorption ; Pulsed lasers ; Solid Mechanics ; Stem cells ; Substrates ; Thin films ; Tissue engineering</subject><ispartof>Journal of materials science, 2015-01, Vol.50 (2), p.923-936</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer Science+Business Media New York 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113</citedby><cites>FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Paun, Irina Alexandra</creatorcontrib><creatorcontrib>Zamfirescu, Marian</creatorcontrib><creatorcontrib>Mihailescu, Mona</creatorcontrib><creatorcontrib>Luculescu, Catalin Romeo</creatorcontrib><creatorcontrib>Mustaciosu, Cosmin Catalin</creatorcontrib><creatorcontrib>Dorobantu, Ion</creatorcontrib><creatorcontrib>Calenic, Bogdan</creatorcontrib><creatorcontrib>Dinescu, Maria</creatorcontrib><title>Laser micro-patterning of biodegradable polymer blends for tissue engineering</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>We propose a multistep all laser, maskless, and solvent free synthesis of micro-patterned substrates of biodegradable polymer blends, with applicability for guided cell adhesion and localized hyaluronic acid (HA) immobilization. The polymer blends comprised polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), and polylactide-polyethylene glycol-polylactide (PPP) in 1:1:1 blending ratios. Polymer patterning was performed by laser processing in two steps. First, the polymers were patterned with periodic micro-channels by direct femtosecond laser ablation, which provided flexibility in design and spatial accuracy for the patterns. As a second step, the micro-patterned polymers were coated with thin layers of polymer blends using matrix assisted pulsed laser evaporation (MAPLE). The resulted sandwich substrates were composed of a bottom, micro-patterned layer and thin, top layer which conserved the patterns from the underlying layer and preserved the polymers chemical composition. Depending on the bottom/top layers, the substrates were denominated PU/PU:PLGA:PPP and PU:PLGA:PPP/PU:PLGA:PPP, respectively. The laser generated micro-patterns were used for selective attachment of oral keratinocyte stem cells and for HA immobilization. The highest cellular density was found on the PU:PLGA:PPP/PU:PLGA:PPP substrate, where the spongy-like micro-channels provided multiple anchoring points for the cells. For both substrates, the micro-channels enabled localized immobilization of HA. The effectiveness of HA immobilization was tested against cell adhesion and protein adsorption.</description><subject>Adhesion tests</subject><subject>Anchoring</subject><subject>Biodegradability</subject><subject>Biodegradable materials</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Femtosecond pulsed lasers</subject><subject>Glycolic acid</subject><subject>Hyaluronic acid</subject><subject>Hydroxyapatite</subject><subject>Immobilization</subject><subject>Laser ablation</subject><subject>Laser processing</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Microchannels</subject><subject>Original Paper</subject><subject>Plutonium</subject><subject>Polyethylene glycol</subject><subject>Polymer blends</subject><subject>Polymer industry</subject><subject>Polymer Sciences</subject><subject>Polyols</subject><subject>Polyurethane resins</subject><subject>Polyurethanes</subject><subject>Protein adsorption</subject><subject>Pulsed lasers</subject><subject>Solid Mechanics</subject><subject>Stem cells</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Tissue engineering</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU2L1TAUQIMo-Bz9Ae4KbnSR8d60adPlMPgx8ETwYx2S9qZk6Etq0oLv35tHBRlBJIuEcE5Ichh7iXCNAN3bjKBkzQEbrlop-PkRO6Dsat4oqB-zA4AQXDQtPmXPcr4HANkJPLBPR5MpVSc_pMgXs66Ugg9TFV1lfRxpSmY0dqZqifP5VMiyDmOuXEzV6nPeqKIw-UCUivacPXFmzvTi93zFvr9_9-32Iz9-_nB3e3Pkg2zFyoV0jqgDVPVIppe2UWSlBePQumFA6GU7jj0ZrMd2HAYSnQVrG7QKUCLWV-z1fu6S4o-N8qpPPg80zyZQ3LLGTirRCJT9_9FWYiM62cuCvvoLvY9bCuUhuhymhIJe1YW63qnJzKR9cHFNZihjpPKLMZDzZf-m7kXT9dBCEd48EAqz0s91MlvO-u7rl4cs7mzJkXMip5fkTyadNYK-hNZ7aF1C60tofS6O2J28XBpQ-nPtf0u_ADQ7qp8</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Paun, Irina Alexandra</creator><creator>Zamfirescu, Marian</creator><creator>Mihailescu, Mona</creator><creator>Luculescu, Catalin Romeo</creator><creator>Mustaciosu, Cosmin Catalin</creator><creator>Dorobantu, Ion</creator><creator>Calenic, Bogdan</creator><creator>Dinescu, Maria</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7T7</scope><scope>C1K</scope><scope>P64</scope></search><sort><creationdate>20150101</creationdate><title>Laser micro-patterning of biodegradable polymer blends for tissue engineering</title><author>Paun, Irina Alexandra ; Zamfirescu, Marian ; Mihailescu, Mona ; Luculescu, Catalin Romeo ; Mustaciosu, Cosmin Catalin ; Dorobantu, Ion ; Calenic, Bogdan ; Dinescu, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adhesion tests</topic><topic>Anchoring</topic><topic>Biodegradability</topic><topic>Biodegradable materials</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Femtosecond pulsed lasers</topic><topic>Glycolic acid</topic><topic>Hyaluronic acid</topic><topic>Hydroxyapatite</topic><topic>Immobilization</topic><topic>Laser ablation</topic><topic>Laser processing</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Microchannels</topic><topic>Original Paper</topic><topic>Plutonium</topic><topic>Polyethylene glycol</topic><topic>Polymer blends</topic><topic>Polymer industry</topic><topic>Polymer Sciences</topic><topic>Polyols</topic><topic>Polyurethane resins</topic><topic>Polyurethanes</topic><topic>Protein adsorption</topic><topic>Pulsed lasers</topic><topic>Solid Mechanics</topic><topic>Stem cells</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paun, Irina Alexandra</creatorcontrib><creatorcontrib>Zamfirescu, Marian</creatorcontrib><creatorcontrib>Mihailescu, Mona</creatorcontrib><creatorcontrib>Luculescu, Catalin Romeo</creatorcontrib><creatorcontrib>Mustaciosu, Cosmin Catalin</creatorcontrib><creatorcontrib>Dorobantu, Ion</creatorcontrib><creatorcontrib>Calenic, Bogdan</creatorcontrib><creatorcontrib>Dinescu, Maria</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paun, Irina Alexandra</au><au>Zamfirescu, Marian</au><au>Mihailescu, Mona</au><au>Luculescu, Catalin Romeo</au><au>Mustaciosu, Cosmin Catalin</au><au>Dorobantu, Ion</au><au>Calenic, Bogdan</au><au>Dinescu, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser micro-patterning of biodegradable polymer blends for tissue engineering</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>50</volume><issue>2</issue><spage>923</spage><epage>936</epage><pages>923-936</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>We propose a multistep all laser, maskless, and solvent free synthesis of micro-patterned substrates of biodegradable polymer blends, with applicability for guided cell adhesion and localized hyaluronic acid (HA) immobilization. The polymer blends comprised polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), and polylactide-polyethylene glycol-polylactide (PPP) in 1:1:1 blending ratios. Polymer patterning was performed by laser processing in two steps. First, the polymers were patterned with periodic micro-channels by direct femtosecond laser ablation, which provided flexibility in design and spatial accuracy for the patterns. As a second step, the micro-patterned polymers were coated with thin layers of polymer blends using matrix assisted pulsed laser evaporation (MAPLE). The resulted sandwich substrates were composed of a bottom, micro-patterned layer and thin, top layer which conserved the patterns from the underlying layer and preserved the polymers chemical composition. Depending on the bottom/top layers, the substrates were denominated PU/PU:PLGA:PPP and PU:PLGA:PPP/PU:PLGA:PPP, respectively. The laser generated micro-patterns were used for selective attachment of oral keratinocyte stem cells and for HA immobilization. The highest cellular density was found on the PU:PLGA:PPP/PU:PLGA:PPP substrate, where the spongy-like micro-channels provided multiple anchoring points for the cells. For both substrates, the micro-channels enabled localized immobilization of HA. The effectiveness of HA immobilization was tested against cell adhesion and protein adsorption.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-014-8652-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2015-01, Vol.50 (2), p.923-936
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1758242159
source Springer Nature
subjects Adhesion tests
Anchoring
Biodegradability
Biodegradable materials
Cell adhesion
Cell adhesion & migration
Characterization and Evaluation of Materials
Chemical composition
Chemical synthesis
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Femtosecond pulsed lasers
Glycolic acid
Hyaluronic acid
Hydroxyapatite
Immobilization
Laser ablation
Laser processing
Lasers
Materials Science
Microchannels
Original Paper
Plutonium
Polyethylene glycol
Polymer blends
Polymer industry
Polymer Sciences
Polyols
Polyurethane resins
Polyurethanes
Protein adsorption
Pulsed lasers
Solid Mechanics
Stem cells
Substrates
Thin films
Tissue engineering
title Laser micro-patterning of biodegradable polymer blends for tissue engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20micro-patterning%20of%20biodegradable%20polymer%20blends%20for%20tissue%20engineering&rft.jtitle=Journal%20of%20materials%20science&rft.au=Paun,%20Irina%20Alexandra&rft.date=2015-01-01&rft.volume=50&rft.issue=2&rft.spage=923&rft.epage=936&rft.pages=923-936&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-014-8652-y&rft_dat=%3Cgale_proqu%3EA392479060%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428280983&rft_id=info:pmid/&rft_galeid=A392479060&rfr_iscdi=true