Loading…
Laser micro-patterning of biodegradable polymer blends for tissue engineering
We propose a multistep all laser, maskless, and solvent free synthesis of micro-patterned substrates of biodegradable polymer blends, with applicability for guided cell adhesion and localized hyaluronic acid (HA) immobilization. The polymer blends comprised polyurethane (PU), poly(lactic-co-glycolic...
Saved in:
Published in: | Journal of materials science 2015-01, Vol.50 (2), p.923-936 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113 |
---|---|
cites | cdi_FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113 |
container_end_page | 936 |
container_issue | 2 |
container_start_page | 923 |
container_title | Journal of materials science |
container_volume | 50 |
creator | Paun, Irina Alexandra Zamfirescu, Marian Mihailescu, Mona Luculescu, Catalin Romeo Mustaciosu, Cosmin Catalin Dorobantu, Ion Calenic, Bogdan Dinescu, Maria |
description | We propose a multistep all laser, maskless, and solvent free synthesis of micro-patterned substrates of biodegradable polymer blends, with applicability for guided cell adhesion and localized hyaluronic acid (HA) immobilization. The polymer blends comprised polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), and polylactide-polyethylene glycol-polylactide (PPP) in 1:1:1 blending ratios. Polymer patterning was performed by laser processing in two steps. First, the polymers were patterned with periodic micro-channels by direct femtosecond laser ablation, which provided flexibility in design and spatial accuracy for the patterns. As a second step, the micro-patterned polymers were coated with thin layers of polymer blends using matrix assisted pulsed laser evaporation (MAPLE). The resulted
sandwich
substrates were composed of a bottom, micro-patterned layer and thin, top layer which conserved the patterns from the underlying layer and preserved the polymers chemical composition. Depending on the bottom/top layers, the substrates were denominated PU/PU:PLGA:PPP and PU:PLGA:PPP/PU:PLGA:PPP, respectively. The laser generated micro-patterns were used for selective attachment of oral keratinocyte stem cells and for HA immobilization. The highest cellular density was found on the PU:PLGA:PPP/PU:PLGA:PPP substrate, where the spongy-like micro-channels provided multiple anchoring points for the cells. For both substrates, the micro-channels enabled localized immobilization of HA. The effectiveness of HA immobilization was tested against cell adhesion and protein adsorption. |
doi_str_mv | 10.1007/s10853-014-8652-y |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1758242159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A392479060</galeid><sourcerecordid>A392479060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113</originalsourceid><addsrcrecordid>eNqFkU2L1TAUQIMo-Bz9Ae4KbnSR8d60adPlMPgx8ETwYx2S9qZk6Etq0oLv35tHBRlBJIuEcE5Ichh7iXCNAN3bjKBkzQEbrlop-PkRO6Dsat4oqB-zA4AQXDQtPmXPcr4HANkJPLBPR5MpVSc_pMgXs66Ugg9TFV1lfRxpSmY0dqZqifP5VMiyDmOuXEzV6nPeqKIw-UCUivacPXFmzvTi93zFvr9_9-32Iz9-_nB3e3Pkg2zFyoV0jqgDVPVIppe2UWSlBePQumFA6GU7jj0ZrMd2HAYSnQVrG7QKUCLWV-z1fu6S4o-N8qpPPg80zyZQ3LLGTirRCJT9_9FWYiM62cuCvvoLvY9bCuUhuhymhIJe1YW63qnJzKR9cHFNZihjpPKLMZDzZf-m7kXT9dBCEd48EAqz0s91MlvO-u7rl4cs7mzJkXMip5fkTyadNYK-hNZ7aF1C60tofS6O2J28XBpQ-nPtf0u_ADQ7qp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428280983</pqid></control><display><type>article</type><title>Laser micro-patterning of biodegradable polymer blends for tissue engineering</title><source>Springer Nature</source><creator>Paun, Irina Alexandra ; Zamfirescu, Marian ; Mihailescu, Mona ; Luculescu, Catalin Romeo ; Mustaciosu, Cosmin Catalin ; Dorobantu, Ion ; Calenic, Bogdan ; Dinescu, Maria</creator><creatorcontrib>Paun, Irina Alexandra ; Zamfirescu, Marian ; Mihailescu, Mona ; Luculescu, Catalin Romeo ; Mustaciosu, Cosmin Catalin ; Dorobantu, Ion ; Calenic, Bogdan ; Dinescu, Maria</creatorcontrib><description>We propose a multistep all laser, maskless, and solvent free synthesis of micro-patterned substrates of biodegradable polymer blends, with applicability for guided cell adhesion and localized hyaluronic acid (HA) immobilization. The polymer blends comprised polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), and polylactide-polyethylene glycol-polylactide (PPP) in 1:1:1 blending ratios. Polymer patterning was performed by laser processing in two steps. First, the polymers were patterned with periodic micro-channels by direct femtosecond laser ablation, which provided flexibility in design and spatial accuracy for the patterns. As a second step, the micro-patterned polymers were coated with thin layers of polymer blends using matrix assisted pulsed laser evaporation (MAPLE). The resulted
sandwich
substrates were composed of a bottom, micro-patterned layer and thin, top layer which conserved the patterns from the underlying layer and preserved the polymers chemical composition. Depending on the bottom/top layers, the substrates were denominated PU/PU:PLGA:PPP and PU:PLGA:PPP/PU:PLGA:PPP, respectively. The laser generated micro-patterns were used for selective attachment of oral keratinocyte stem cells and for HA immobilization. The highest cellular density was found on the PU:PLGA:PPP/PU:PLGA:PPP substrate, where the spongy-like micro-channels provided multiple anchoring points for the cells. For both substrates, the micro-channels enabled localized immobilization of HA. The effectiveness of HA immobilization was tested against cell adhesion and protein adsorption.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-014-8652-y</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Adhesion tests ; Anchoring ; Biodegradability ; Biodegradable materials ; Cell adhesion ; Cell adhesion & migration ; Characterization and Evaluation of Materials ; Chemical composition ; Chemical synthesis ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Femtosecond pulsed lasers ; Glycolic acid ; Hyaluronic acid ; Hydroxyapatite ; Immobilization ; Laser ablation ; Laser processing ; Lasers ; Materials Science ; Microchannels ; Original Paper ; Plutonium ; Polyethylene glycol ; Polymer blends ; Polymer industry ; Polymer Sciences ; Polyols ; Polyurethane resins ; Polyurethanes ; Protein adsorption ; Pulsed lasers ; Solid Mechanics ; Stem cells ; Substrates ; Thin films ; Tissue engineering</subject><ispartof>Journal of materials science, 2015-01, Vol.50 (2), p.923-936</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer Science+Business Media New York 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113</citedby><cites>FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Paun, Irina Alexandra</creatorcontrib><creatorcontrib>Zamfirescu, Marian</creatorcontrib><creatorcontrib>Mihailescu, Mona</creatorcontrib><creatorcontrib>Luculescu, Catalin Romeo</creatorcontrib><creatorcontrib>Mustaciosu, Cosmin Catalin</creatorcontrib><creatorcontrib>Dorobantu, Ion</creatorcontrib><creatorcontrib>Calenic, Bogdan</creatorcontrib><creatorcontrib>Dinescu, Maria</creatorcontrib><title>Laser micro-patterning of biodegradable polymer blends for tissue engineering</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>We propose a multistep all laser, maskless, and solvent free synthesis of micro-patterned substrates of biodegradable polymer blends, with applicability for guided cell adhesion and localized hyaluronic acid (HA) immobilization. The polymer blends comprised polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), and polylactide-polyethylene glycol-polylactide (PPP) in 1:1:1 blending ratios. Polymer patterning was performed by laser processing in two steps. First, the polymers were patterned with periodic micro-channels by direct femtosecond laser ablation, which provided flexibility in design and spatial accuracy for the patterns. As a second step, the micro-patterned polymers were coated with thin layers of polymer blends using matrix assisted pulsed laser evaporation (MAPLE). The resulted
sandwich
substrates were composed of a bottom, micro-patterned layer and thin, top layer which conserved the patterns from the underlying layer and preserved the polymers chemical composition. Depending on the bottom/top layers, the substrates were denominated PU/PU:PLGA:PPP and PU:PLGA:PPP/PU:PLGA:PPP, respectively. The laser generated micro-patterns were used for selective attachment of oral keratinocyte stem cells and for HA immobilization. The highest cellular density was found on the PU:PLGA:PPP/PU:PLGA:PPP substrate, where the spongy-like micro-channels provided multiple anchoring points for the cells. For both substrates, the micro-channels enabled localized immobilization of HA. The effectiveness of HA immobilization was tested against cell adhesion and protein adsorption.</description><subject>Adhesion tests</subject><subject>Anchoring</subject><subject>Biodegradability</subject><subject>Biodegradable materials</subject><subject>Cell adhesion</subject><subject>Cell adhesion & migration</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Femtosecond pulsed lasers</subject><subject>Glycolic acid</subject><subject>Hyaluronic acid</subject><subject>Hydroxyapatite</subject><subject>Immobilization</subject><subject>Laser ablation</subject><subject>Laser processing</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Microchannels</subject><subject>Original Paper</subject><subject>Plutonium</subject><subject>Polyethylene glycol</subject><subject>Polymer blends</subject><subject>Polymer industry</subject><subject>Polymer Sciences</subject><subject>Polyols</subject><subject>Polyurethane resins</subject><subject>Polyurethanes</subject><subject>Protein adsorption</subject><subject>Pulsed lasers</subject><subject>Solid Mechanics</subject><subject>Stem cells</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Tissue engineering</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU2L1TAUQIMo-Bz9Ae4KbnSR8d60adPlMPgx8ETwYx2S9qZk6Etq0oLv35tHBRlBJIuEcE5Ichh7iXCNAN3bjKBkzQEbrlop-PkRO6Dsat4oqB-zA4AQXDQtPmXPcr4HANkJPLBPR5MpVSc_pMgXs66Ugg9TFV1lfRxpSmY0dqZqifP5VMiyDmOuXEzV6nPeqKIw-UCUivacPXFmzvTi93zFvr9_9-32Iz9-_nB3e3Pkg2zFyoV0jqgDVPVIppe2UWSlBePQumFA6GU7jj0ZrMd2HAYSnQVrG7QKUCLWV-z1fu6S4o-N8qpPPg80zyZQ3LLGTirRCJT9_9FWYiM62cuCvvoLvY9bCuUhuhymhIJe1YW63qnJzKR9cHFNZihjpPKLMZDzZf-m7kXT9dBCEd48EAqz0s91MlvO-u7rl4cs7mzJkXMip5fkTyadNYK-hNZ7aF1C60tofS6O2J28XBpQ-nPtf0u_ADQ7qp8</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Paun, Irina Alexandra</creator><creator>Zamfirescu, Marian</creator><creator>Mihailescu, Mona</creator><creator>Luculescu, Catalin Romeo</creator><creator>Mustaciosu, Cosmin Catalin</creator><creator>Dorobantu, Ion</creator><creator>Calenic, Bogdan</creator><creator>Dinescu, Maria</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7T7</scope><scope>C1K</scope><scope>P64</scope></search><sort><creationdate>20150101</creationdate><title>Laser micro-patterning of biodegradable polymer blends for tissue engineering</title><author>Paun, Irina Alexandra ; Zamfirescu, Marian ; Mihailescu, Mona ; Luculescu, Catalin Romeo ; Mustaciosu, Cosmin Catalin ; Dorobantu, Ion ; Calenic, Bogdan ; Dinescu, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adhesion tests</topic><topic>Anchoring</topic><topic>Biodegradability</topic><topic>Biodegradable materials</topic><topic>Cell adhesion</topic><topic>Cell adhesion & migration</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Femtosecond pulsed lasers</topic><topic>Glycolic acid</topic><topic>Hyaluronic acid</topic><topic>Hydroxyapatite</topic><topic>Immobilization</topic><topic>Laser ablation</topic><topic>Laser processing</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Microchannels</topic><topic>Original Paper</topic><topic>Plutonium</topic><topic>Polyethylene glycol</topic><topic>Polymer blends</topic><topic>Polymer industry</topic><topic>Polymer Sciences</topic><topic>Polyols</topic><topic>Polyurethane resins</topic><topic>Polyurethanes</topic><topic>Protein adsorption</topic><topic>Pulsed lasers</topic><topic>Solid Mechanics</topic><topic>Stem cells</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paun, Irina Alexandra</creatorcontrib><creatorcontrib>Zamfirescu, Marian</creatorcontrib><creatorcontrib>Mihailescu, Mona</creatorcontrib><creatorcontrib>Luculescu, Catalin Romeo</creatorcontrib><creatorcontrib>Mustaciosu, Cosmin Catalin</creatorcontrib><creatorcontrib>Dorobantu, Ion</creatorcontrib><creatorcontrib>Calenic, Bogdan</creatorcontrib><creatorcontrib>Dinescu, Maria</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paun, Irina Alexandra</au><au>Zamfirescu, Marian</au><au>Mihailescu, Mona</au><au>Luculescu, Catalin Romeo</au><au>Mustaciosu, Cosmin Catalin</au><au>Dorobantu, Ion</au><au>Calenic, Bogdan</au><au>Dinescu, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser micro-patterning of biodegradable polymer blends for tissue engineering</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>50</volume><issue>2</issue><spage>923</spage><epage>936</epage><pages>923-936</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>We propose a multistep all laser, maskless, and solvent free synthesis of micro-patterned substrates of biodegradable polymer blends, with applicability for guided cell adhesion and localized hyaluronic acid (HA) immobilization. The polymer blends comprised polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), and polylactide-polyethylene glycol-polylactide (PPP) in 1:1:1 blending ratios. Polymer patterning was performed by laser processing in two steps. First, the polymers were patterned with periodic micro-channels by direct femtosecond laser ablation, which provided flexibility in design and spatial accuracy for the patterns. As a second step, the micro-patterned polymers were coated with thin layers of polymer blends using matrix assisted pulsed laser evaporation (MAPLE). The resulted
sandwich
substrates were composed of a bottom, micro-patterned layer and thin, top layer which conserved the patterns from the underlying layer and preserved the polymers chemical composition. Depending on the bottom/top layers, the substrates were denominated PU/PU:PLGA:PPP and PU:PLGA:PPP/PU:PLGA:PPP, respectively. The laser generated micro-patterns were used for selective attachment of oral keratinocyte stem cells and for HA immobilization. The highest cellular density was found on the PU:PLGA:PPP/PU:PLGA:PPP substrate, where the spongy-like micro-channels provided multiple anchoring points for the cells. For both substrates, the micro-channels enabled localized immobilization of HA. The effectiveness of HA immobilization was tested against cell adhesion and protein adsorption.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-014-8652-y</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2015-01, Vol.50 (2), p.923-936 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_1758242159 |
source | Springer Nature |
subjects | Adhesion tests Anchoring Biodegradability Biodegradable materials Cell adhesion Cell adhesion & migration Characterization and Evaluation of Materials Chemical composition Chemical synthesis Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Femtosecond pulsed lasers Glycolic acid Hyaluronic acid Hydroxyapatite Immobilization Laser ablation Laser processing Lasers Materials Science Microchannels Original Paper Plutonium Polyethylene glycol Polymer blends Polymer industry Polymer Sciences Polyols Polyurethane resins Polyurethanes Protein adsorption Pulsed lasers Solid Mechanics Stem cells Substrates Thin films Tissue engineering |
title | Laser micro-patterning of biodegradable polymer blends for tissue engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20micro-patterning%20of%20biodegradable%20polymer%20blends%20for%20tissue%20engineering&rft.jtitle=Journal%20of%20materials%20science&rft.au=Paun,%20Irina%20Alexandra&rft.date=2015-01-01&rft.volume=50&rft.issue=2&rft.spage=923&rft.epage=936&rft.pages=923-936&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-014-8652-y&rft_dat=%3Cgale_proqu%3EA392479060%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c562t-25ffee70183dea95b48eb5b0af1bfcc10956dd9ea13d6dcce27b0bb41b8015113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428280983&rft_id=info:pmid/&rft_galeid=A392479060&rfr_iscdi=true |