Loading…

A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall

The study presents a conditional distribution transformation (CDT) method for improving radar rainfall (RR) verifications that use sparse raingauge networks as the ground reference (GR). Large differences between the sampling areas of radar and raingauge measurements render direct comparisons proble...

Full description

Saved in:
Bibliographic Details
Published in:Advances in water resources 2004-10, Vol.27 (10), p.967-980
Main Authors: Habib, Emad, Ciach, Grzegorz J., Krajewski, Witold F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-c53f36fe6426d3bfcfa72837f3d7154641d26d0780812a9b66c50ef04d45e6fe3
cites cdi_FETCH-LOGICAL-c398t-c53f36fe6426d3bfcfa72837f3d7154641d26d0780812a9b66c50ef04d45e6fe3
container_end_page 980
container_issue 10
container_start_page 967
container_title Advances in water resources
container_volume 27
creator Habib, Emad
Ciach, Grzegorz J.
Krajewski, Witold F.
description The study presents a conditional distribution transformation (CDT) method for improving radar rainfall (RR) verifications that use sparse raingauge networks as the ground reference (GR). Large differences between the sampling areas of radar and raingauge measurements render direct comparisons problematic. The purpose of the CDT method is to filter out the raingauge representativeness errors from radar–raingauge verification samples. Our objective is to test the validity and evaluate the accuracy of this method. These analyses are based on two large data samples from high-density research networks covering the Goodwin Creek watershed in Mississippi and the Little Washita watershed in Oklahoma. An example implementation in a quasi operational situation is also presented, and sample size requirements are investigated using Monte Carlo simulations. Our tests indicate that the CDT method performs with satisfactory accuracy and can considerably improve on the currently applied RR verification practices.
doi_str_mv 10.1016/j.advwatres.2004.08.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17593898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170804001162</els_id><sourcerecordid>17593898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-c53f36fe6426d3bfcfa72837f3d7154641d26d0780812a9b66c50ef04d45e6fe3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEUpfS31Bf4JZ0HCexc1xVUJAq9QA9W157vPUqGy9jZxFXfjlebdVy4zQz8vfeWG-q6ppDw4EPN7vGuOMvkwlT0wJ0DagGQLypVlzJth6HXr6tViBgrLkEdVG9T2kHAKqT7ar6s2Z7zE_RMR-J-TBlpDBvWVwyI1M6s2yRER6KPc7Z5HDEGVNiSBQpMU9xz_ITsmPR-WALEGfmQsoUNstpSCz6YuUMMTO7f01L5800fajelZLw6rleVo9fPv-4_VrfP9x9u13f11aMKte2F14MHoeuHZzYeOuNbJWQXjjJ-27ouCsPIBUo3ppxMwy2B_TQua7HohOX1aez74HizwVT1vuQLE6TmTEuSXPZj0KNqoDyDFqKKRF6faCwN_Rbc9CnzPVOv2SuT5lrULpkXpQfn1eYZM3kycw2pFf50La8Uyfu-sx5E7XZUmEev7fABcCoZLlNIdZnAksix4Ckkw04W3SB0GbtYvjvb_4CYUOo5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17593898</pqid></control><display><type>article</type><title>A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall</title><source>Elsevier</source><creator>Habib, Emad ; Ciach, Grzegorz J. ; Krajewski, Witold F.</creator><creatorcontrib>Habib, Emad ; Ciach, Grzegorz J. ; Krajewski, Witold F.</creatorcontrib><description>The study presents a conditional distribution transformation (CDT) method for improving radar rainfall (RR) verifications that use sparse raingauge networks as the ground reference (GR). Large differences between the sampling areas of radar and raingauge measurements render direct comparisons problematic. The purpose of the CDT method is to filter out the raingauge representativeness errors from radar–raingauge verification samples. Our objective is to test the validity and evaluate the accuracy of this method. These analyses are based on two large data samples from high-density research networks covering the Goodwin Creek watershed in Mississippi and the Little Washita watershed in Oklahoma. An example implementation in a quasi operational situation is also presented, and sample size requirements are investigated using Monte Carlo simulations. Our tests indicate that the CDT method performs with satisfactory accuracy and can considerably improve on the currently applied RR verification practices.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2004.08.003</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied geophysics ; Area-point errors ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; hydrologic models ; Hydrology ; Hydrology. Hydrogeology ; Internal geophysics ; Monte Carlo method ; radar ; Radar rainfall ; rain ; rain gauges ; Rainfall verification ; Raingauge ; watershed hydrology</subject><ispartof>Advances in water resources, 2004-10, Vol.27 (10), p.967-980</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-c53f36fe6426d3bfcfa72837f3d7154641d26d0780812a9b66c50ef04d45e6fe3</citedby><cites>FETCH-LOGICAL-c398t-c53f36fe6426d3bfcfa72837f3d7154641d26d0780812a9b66c50ef04d45e6fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16221483$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Habib, Emad</creatorcontrib><creatorcontrib>Ciach, Grzegorz J.</creatorcontrib><creatorcontrib>Krajewski, Witold F.</creatorcontrib><title>A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall</title><title>Advances in water resources</title><description>The study presents a conditional distribution transformation (CDT) method for improving radar rainfall (RR) verifications that use sparse raingauge networks as the ground reference (GR). Large differences between the sampling areas of radar and raingauge measurements render direct comparisons problematic. The purpose of the CDT method is to filter out the raingauge representativeness errors from radar–raingauge verification samples. Our objective is to test the validity and evaluate the accuracy of this method. These analyses are based on two large data samples from high-density research networks covering the Goodwin Creek watershed in Mississippi and the Little Washita watershed in Oklahoma. An example implementation in a quasi operational situation is also presented, and sample size requirements are investigated using Monte Carlo simulations. Our tests indicate that the CDT method performs with satisfactory accuracy and can considerably improve on the currently applied RR verification practices.</description><subject>Applied geophysics</subject><subject>Area-point errors</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>hydrologic models</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Internal geophysics</subject><subject>Monte Carlo method</subject><subject>radar</subject><subject>Radar rainfall</subject><subject>rain</subject><subject>rain gauges</subject><subject>Rainfall verification</subject><subject>Raingauge</subject><subject>watershed hydrology</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhSMEUpfS31Bf4JZ0HCexc1xVUJAq9QA9W157vPUqGy9jZxFXfjlebdVy4zQz8vfeWG-q6ppDw4EPN7vGuOMvkwlT0wJ0DagGQLypVlzJth6HXr6tViBgrLkEdVG9T2kHAKqT7ar6s2Z7zE_RMR-J-TBlpDBvWVwyI1M6s2yRER6KPc7Z5HDEGVNiSBQpMU9xz_ITsmPR-WALEGfmQsoUNstpSCz6YuUMMTO7f01L5800fajelZLw6rleVo9fPv-4_VrfP9x9u13f11aMKte2F14MHoeuHZzYeOuNbJWQXjjJ-27ouCsPIBUo3ppxMwy2B_TQua7HohOX1aez74HizwVT1vuQLE6TmTEuSXPZj0KNqoDyDFqKKRF6faCwN_Rbc9CnzPVOv2SuT5lrULpkXpQfn1eYZM3kycw2pFf50La8Uyfu-sx5E7XZUmEev7fABcCoZLlNIdZnAksix4Ckkw04W3SB0GbtYvjvb_4CYUOo5w</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Habib, Emad</creator><creator>Ciach, Grzegorz J.</creator><creator>Krajewski, Witold F.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>20041001</creationdate><title>A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall</title><author>Habib, Emad ; Ciach, Grzegorz J. ; Krajewski, Witold F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-c53f36fe6426d3bfcfa72837f3d7154641d26d0780812a9b66c50ef04d45e6fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied geophysics</topic><topic>Area-point errors</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>hydrologic models</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Internal geophysics</topic><topic>Monte Carlo method</topic><topic>radar</topic><topic>Radar rainfall</topic><topic>rain</topic><topic>rain gauges</topic><topic>Rainfall verification</topic><topic>Raingauge</topic><topic>watershed hydrology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habib, Emad</creatorcontrib><creatorcontrib>Ciach, Grzegorz J.</creatorcontrib><creatorcontrib>Krajewski, Witold F.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habib, Emad</au><au>Ciach, Grzegorz J.</au><au>Krajewski, Witold F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall</atitle><jtitle>Advances in water resources</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>27</volume><issue>10</issue><spage>967</spage><epage>980</epage><pages>967-980</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>The study presents a conditional distribution transformation (CDT) method for improving radar rainfall (RR) verifications that use sparse raingauge networks as the ground reference (GR). Large differences between the sampling areas of radar and raingauge measurements render direct comparisons problematic. The purpose of the CDT method is to filter out the raingauge representativeness errors from radar–raingauge verification samples. Our objective is to test the validity and evaluate the accuracy of this method. These analyses are based on two large data samples from high-density research networks covering the Goodwin Creek watershed in Mississippi and the Little Washita watershed in Oklahoma. An example implementation in a quasi operational situation is also presented, and sample size requirements are investigated using Monte Carlo simulations. Our tests indicate that the CDT method performs with satisfactory accuracy and can considerably improve on the currently applied RR verification practices.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2004.08.003</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 2004-10, Vol.27 (10), p.967-980
issn 0309-1708
1872-9657
language eng
recordid cdi_proquest_miscellaneous_17593898
source Elsevier
subjects Applied geophysics
Area-point errors
Earth sciences
Earth, ocean, space
Exact sciences and technology
hydrologic models
Hydrology
Hydrology. Hydrogeology
Internal geophysics
Monte Carlo method
radar
Radar rainfall
rain
rain gauges
Rainfall verification
Raingauge
watershed hydrology
title A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20filtering%20out%20raingauge%20representativeness%20errors%20from%20the%20verification%20distributions%20of%20radar%20and%20raingauge%20rainfall&rft.jtitle=Advances%20in%20water%20resources&rft.au=Habib,%20Emad&rft.date=2004-10-01&rft.volume=27&rft.issue=10&rft.spage=967&rft.epage=980&rft.pages=967-980&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/j.advwatres.2004.08.003&rft_dat=%3Cproquest_cross%3E17593898%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-c53f36fe6426d3bfcfa72837f3d7154641d26d0780812a9b66c50ef04d45e6fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17593898&rft_id=info:pmid/&rfr_iscdi=true