Loading…

A two-component hydrograph separation for three high-elevation catchments in the Sierra Nevada, California

Two‐component hydrograph separations were performed for three, nested, snowmelt‐dominated catchments in Sequoia National Park. The purpose of the hydrograph separations was to: (i) differentiate between the old and new water contributions to discharge during snowmelt using δ18O signatures; (ii) iden...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological processes 2004-06, Vol.18 (9), p.1721-1733
Main Authors: Huth, A. K., Leydecker, A., Sickman, J. O., Bales, R. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two‐component hydrograph separations were performed for three, nested, snowmelt‐dominated catchments in Sequoia National Park. The purpose of the hydrograph separations was to: (i) differentiate between the old and new water contributions to discharge during snowmelt using δ18O signatures; (ii) identify the fraction of snowmelt that travelled through the subsurface (reactive) compartment during the snowmelt period using silica or sodium; and (iii) investigate the impact of changing end‐member signatures on the separations. ‘Old’ water refers to water that was stored in the watershed during the previous year, whereas ‘new’ water is current snowmelt. Hydrograph separations were performed for both a high‐accumulation (1998, annual precipitation 2·4 m) and an average year (1999, 1·3 m). The proportion of old water contribution to discharge during the rising limb of the hydrograph was 10–20%, with 80–100% of snowmelt being reactive, i.e. passing through soil and talus. Estimates of old and new soil water and direct snowmelt entering the stream varied among the catchments in 1999. Differences between these components were minimal in 1998, regardless of varying topography and differing proportions of soil, rock and talus. Using time‐dependent rather than constant δ18O meltwater and silica soil‐water signatures made a meaningful impact on both new and old water, and reactive and unreactive, estimates. Copyright © 2004 John Wiley & Sons, Ltd.
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.1414