Loading…
Bimanual elbow exoskeleton: Force based protocol and rehabilitation quantification
An aging population, along with the increase in cardiovascular disease incidence that accompanies this demographic shift, is likely to increase both the economic and medical burden associated with stroke in western societies. Rehabilitation, the standard treatment for stroke, can be expanded and aug...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An aging population, along with the increase in cardiovascular disease incidence that accompanies this demographic shift, is likely to increase both the economic and medical burden associated with stroke in western societies. Rehabilitation, the standard treatment for stroke, can be expanded and augmented with state of the art technologies, such as robotic therapy. This paper expands upon a recent work involving a force-feedback master-slave bimanual exoskeleton for elbow rehabilitation, named a Bimanual Wearable Robotic Device (BWRD). Elbow force data acquired during the execution of custom tasks is analyzed to demonstrate the feasibility of tracking patient progress. Two training tasks that focus on applied forces are examined. The first is called "slave arm follow", which uses the absolute angular impulse as a metric; the second is called "conditional arm static", which uses the rise time to target as a metric, both presented here. The outcomes of these metrics are observed over three days. |
---|---|
ISSN: | 1094-687X 2694-0604 |
DOI: | 10.1109/EMBC.2015.7319429 |