Loading…
Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries
The reversible electrochemical transformation from lithium (Li) and sulfur (S) into Li2S through multielectron reactions can be utilized in secondary Li–S batteries with very high energy density. However, both the low Coulombic efficiency and severe capacity degradation limits the full utilization o...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2016-01, Vol.12 (3), p.381-389 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reversible electrochemical transformation from lithium (Li) and sulfur (S) into Li2S through multielectron reactions can be utilized in secondary Li–S batteries with very high energy density. However, both the low Coulombic efficiency and severe capacity degradation limits the full utilization of active sulfur, which hinders the practical applications of Li–S battery system. The present study reports a ternary‐layered separator with a macroporous polypropylene (PP) matrix layer, graphene oxide (GO) barrier layer, and Nafion retarding layer as the separator for Li–S batteries with high Coulombic efficiency and superior cyclic stability. In the ternary‐layered separator, ultrathin layer of GO (0.0032 mg cm−2, estimated to be around 40 layers) blocks the macropores of PP matrix, and a dense ion selective Nafion layer with a very low loading amount of 0.05 mg cm−2 is attached as a retarding layer to suppress the crossover of sulfur‐containing species. The ternary‐layered separators are effective in improving the initial capacity and the Coulombic efficiency of Li–S cells from 969 to 1057 mAh g−1, and from 80% to over 95% with an LiNO3‐free electrolyte, respectively. The capacity degradation is reduced from 0.34% to 0.18% per cycle within 200 cycles when the PP separator is replaced by the ternary‐layered separators. This work provides the rational design strategy for multifunctional separators at cell scale to effective utilizing of active sulfur and retarding of polysulfides, which offers the possibility of high energy density Li–S cells with long cycling life.
A polypropylene/graphene oxide/Nafion ternary separator is fabricated via the rational integration of support, barrier, and retarding layers for Li–S batteries with high Coulombic efficiency and low capacity decay rate of half that of routine cells. Rapid Li+ transportation and effective polysulfide inhibition are achieved at ultralow loading of barrier and retarding layer of 0.053 mg cm−2. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.201503133 |