Loading…

Differential pathlength factor estimation for brain-like tissue from a single-layer Monte Carlo model

A Monte Carlo simulation-based computational model has been developed for tracing the pathway of light within a single layer of tissue like bloodless human brain. A reflectance mode source-detector geometry is assumed to illuminate the tissue slab with an irradiation of a near infrared wavelength an...

Full description

Saved in:
Bibliographic Details
Published in:2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2015-01, Vol.2015, p.3279-3282
Main Authors: Chatterjee, Subhasri, Phillips, Justin P., Kyriacou, Panayiotis A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-ec0a875f03caf87a94f00083b96b2cff68445fb09d913d8236e75965ba900f03
cites
container_end_page 3282
container_issue
container_start_page 3279
container_title 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
container_volume 2015
creator Chatterjee, Subhasri
Phillips, Justin P.
Kyriacou, Panayiotis A.
description A Monte Carlo simulation-based computational model has been developed for tracing the pathway of light within a single layer of tissue like bloodless human brain. A reflectance mode source-detector geometry is assumed to illuminate the tissue slab with an irradiation of a near infrared wavelength and to detect the re-emitted light intensity. Light is considered to be attenuated within tissue by scattering and absorption. The model has been used to predict the relationship of mean optical path of photons with variable source-detector geometry and thus, to determine a differential pathlength factor (DPF) of 5.66 for incident light of wavelength 810 nm.
doi_str_mv 10.1109/EMBC.2015.7319092
format article
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1760874154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7319092</ieee_id><sourcerecordid>1760874154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ec0a875f03caf87a94f00083b96b2cff68445fb09d913d8236e75965ba900f03</originalsourceid><addsrcrecordid>eNotkEtPwzAQhA0C0ar0ByAuPnJJsR0_jxDKQ2rFpQdukZOuW4OTFNs98O-J1J52V_pmNTMI3VGyoJSYx-X6uVowQsVCldQQwy7Q3ChNOePcMEX1JZpSIXTBJRVX404ML6RWXxM0T-mbEEKVlIyLGzRhUpXSGDZF8OKdgwh99jbgg837AP0u77GzbR4ihpR9Z7MfeuzGs4nW90XwP4CzT-kI2MWhwxYn3-8CFMH-QcTroc-AKxvDgLthC-EWXTsbEszPc4Y2r8tN9V6sPt8-qqdV0ZZC5AJaYrUSjpStdVpZw91oW5eNkQ1rnZOac-EaYraGllvNSglKGCkaawgZVTP0cHp7iMPvcbRedz61EILtYTimeiyAaMWp4CN6f0I9ANSHOIaMf_W52fIfgtto-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760874154</pqid></control><display><type>article</type><title>Differential pathlength factor estimation for brain-like tissue from a single-layer Monte Carlo model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chatterjee, Subhasri ; Phillips, Justin P. ; Kyriacou, Panayiotis A.</creator><creatorcontrib>Chatterjee, Subhasri ; Phillips, Justin P. ; Kyriacou, Panayiotis A.</creatorcontrib><description>A Monte Carlo simulation-based computational model has been developed for tracing the pathway of light within a single layer of tissue like bloodless human brain. A reflectance mode source-detector geometry is assumed to illuminate the tissue slab with an irradiation of a near infrared wavelength and to detect the re-emitted light intensity. Light is considered to be attenuated within tissue by scattering and absorption. The model has been used to predict the relationship of mean optical path of photons with variable source-detector geometry and thus, to determine a differential pathlength factor (DPF) of 5.66 for incident light of wavelength 810 nm.</description><identifier>ISSN: 1094-687X</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9781424492718</identifier><identifier>EISBN: 1424492718</identifier><identifier>DOI: 10.1109/EMBC.2015.7319092</identifier><identifier>PMID: 26736992</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Detectors ; Monte Carlo methods ; Optical detectors ; Optical scattering ; Photonics</subject><ispartof>2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015-01, Vol.2015, p.3279-3282</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-ec0a875f03caf87a94f00083b96b2cff68445fb09d913d8236e75965ba900f03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7319092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7319092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chatterjee, Subhasri</creatorcontrib><creatorcontrib>Phillips, Justin P.</creatorcontrib><creatorcontrib>Kyriacou, Panayiotis A.</creatorcontrib><title>Differential pathlength factor estimation for brain-like tissue from a single-layer Monte Carlo model</title><title>2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><description>A Monte Carlo simulation-based computational model has been developed for tracing the pathway of light within a single layer of tissue like bloodless human brain. A reflectance mode source-detector geometry is assumed to illuminate the tissue slab with an irradiation of a near infrared wavelength and to detect the re-emitted light intensity. Light is considered to be attenuated within tissue by scattering and absorption. The model has been used to predict the relationship of mean optical path of photons with variable source-detector geometry and thus, to determine a differential pathlength factor (DPF) of 5.66 for incident light of wavelength 810 nm.</description><subject>Computational modeling</subject><subject>Detectors</subject><subject>Monte Carlo methods</subject><subject>Optical detectors</subject><subject>Optical scattering</subject><subject>Photonics</subject><issn>1094-687X</issn><issn>1558-4615</issn><issn>2694-0604</issn><isbn>9781424492718</isbn><isbn>1424492718</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtPwzAQhA0C0ar0ByAuPnJJsR0_jxDKQ2rFpQdukZOuW4OTFNs98O-J1J52V_pmNTMI3VGyoJSYx-X6uVowQsVCldQQwy7Q3ChNOePcMEX1JZpSIXTBJRVX404ML6RWXxM0T-mbEEKVlIyLGzRhUpXSGDZF8OKdgwh99jbgg837AP0u77GzbR4ihpR9Z7MfeuzGs4nW90XwP4CzT-kI2MWhwxYn3-8CFMH-QcTroc-AKxvDgLthC-EWXTsbEszPc4Y2r8tN9V6sPt8-qqdV0ZZC5AJaYrUSjpStdVpZw91oW5eNkQ1rnZOac-EaYraGllvNSglKGCkaawgZVTP0cHp7iMPvcbRedz61EILtYTimeiyAaMWp4CN6f0I9ANSHOIaMf_W52fIfgtto-A</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Chatterjee, Subhasri</creator><creator>Phillips, Justin P.</creator><creator>Kyriacou, Panayiotis A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>20150101</creationdate><title>Differential pathlength factor estimation for brain-like tissue from a single-layer Monte Carlo model</title><author>Chatterjee, Subhasri ; Phillips, Justin P. ; Kyriacou, Panayiotis A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ec0a875f03caf87a94f00083b96b2cff68445fb09d913d8236e75965ba900f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational modeling</topic><topic>Detectors</topic><topic>Monte Carlo methods</topic><topic>Optical detectors</topic><topic>Optical scattering</topic><topic>Photonics</topic><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Subhasri</creatorcontrib><creatorcontrib>Phillips, Justin P.</creatorcontrib><creatorcontrib>Kyriacou, Panayiotis A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection><jtitle>2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chatterjee, Subhasri</au><au>Phillips, Justin P.</au><au>Kyriacou, Panayiotis A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential pathlength factor estimation for brain-like tissue from a single-layer Monte Carlo model</atitle><jtitle>2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</jtitle><stitle>EMBC</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><spage>3279</spage><epage>3282</epage><pages>3279-3282</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><eissn>2694-0604</eissn><eisbn>9781424492718</eisbn><eisbn>1424492718</eisbn><abstract>A Monte Carlo simulation-based computational model has been developed for tracing the pathway of light within a single layer of tissue like bloodless human brain. A reflectance mode source-detector geometry is assumed to illuminate the tissue slab with an irradiation of a near infrared wavelength and to detect the re-emitted light intensity. Light is considered to be attenuated within tissue by scattering and absorption. The model has been used to predict the relationship of mean optical path of photons with variable source-detector geometry and thus, to determine a differential pathlength factor (DPF) of 5.66 for incident light of wavelength 810 nm.</abstract><pub>IEEE</pub><pmid>26736992</pmid><doi>10.1109/EMBC.2015.7319092</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015-01, Vol.2015, p.3279-3282
issn 1094-687X
1558-4615
2694-0604
language eng
recordid cdi_proquest_miscellaneous_1760874154
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Detectors
Monte Carlo methods
Optical detectors
Optical scattering
Photonics
title Differential pathlength factor estimation for brain-like tissue from a single-layer Monte Carlo model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20pathlength%20factor%20estimation%20for%20brain-like%20tissue%20from%20a%20single-layer%20Monte%20Carlo%20model&rft.jtitle=2015%2037th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Chatterjee,%20Subhasri&rft.date=2015-01-01&rft.volume=2015&rft.spage=3279&rft.epage=3282&rft.pages=3279-3282&rft.issn=1094-687X&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2015.7319092&rft.eisbn=9781424492718&rft.eisbn_list=1424492718&rft_dat=%3Cproquest_6IE%3E1760874154%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-ec0a875f03caf87a94f00083b96b2cff68445fb09d913d8236e75965ba900f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760874154&rft_id=info:pmid/26736992&rft_ieee_id=7319092&rfr_iscdi=true