Loading…

Translatome profiling: methods for genome-scale analysis of mRNA translation

During the past decade, there has been a rapidly increased appreciation of the role of translation as a key regulatory node in gene expression. Thereby, the development of methods to infer the translatome, which refers to the entirety of mRNAs associated with ribosomes for protein synthesis, has fac...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in functional genomics 2016-01, Vol.15 (1), p.22-31
Main Authors: King, Helen A, Gerber, André P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During the past decade, there has been a rapidly increased appreciation of the role of translation as a key regulatory node in gene expression. Thereby, the development of methods to infer the translatome, which refers to the entirety of mRNAs associated with ribosomes for protein synthesis, has facilitated the discovery of new principles and mechanisms of translation and expanded our view of the underlying logic of protein synthesis. Here, we review the three main methodologies for translatome analysis, and we highlight some of the recent discoveries made using each technique. We first discuss polysomal profiling, a classical technique that involves the separation of mRNAs depending on the number of bound ribosomes using a sucrose gradient, and which has been combined with global analysis tools such as DNA microarrays or high-throughput RNA sequencing to identify the RNAs in polysomal fractions. We then introduce ribosomal profiling, a recently established technique that enables the mapping of ribosomes along mRNAs at near-nucleotide resolution on a global scale. We finally refer to ribosome affinity purification techniques that are based on the cell-type-specific expression of tagged ribosomal proteins, allowing the capture of translatomes from specialized cells in organisms. We discuss the advantages and disadvantages of these three main techniques in the pursuit of defining the translatome, and we speculate about future developments.
ISSN:2041-2649
2041-2657
DOI:10.1093/bfgp/elu045