Loading…
Solution-Processed Gas Sensors Employing SnO2 Quantum Dot/MWCNT Nanocomposites
Solution-processed SnO2 colloidal quantum dots (CQDs) have emerged as an important new class of gas-sensing materials due to their potential for low-cost and high-throughput fabrication. Here we employed the design strategy based on the synergetic effect from highly sensitive SnO2 CQDs and excellent...
Saved in:
Published in: | ACS applied materials & interfaces 2016-01, Vol.8 (1), p.840-846 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solution-processed SnO2 colloidal quantum dots (CQDs) have emerged as an important new class of gas-sensing materials due to their potential for low-cost and high-throughput fabrication. Here we employed the design strategy based on the synergetic effect from highly sensitive SnO2 CQDs and excellent conductive properties of multiwalled carbon nanotubes (MWCNTs) to overcome the transport barrier in CQD gas sensors. The attachment and coverage of SnO2 CQDs on the MWCNT surfaces were achieved by simply mixing the presynthesized SnO2 CQDs and MWCNTs at room temperature. Compared to the pristine SnO2 CQDs, the sensor based on SnO2 quantum dot/MWCNT nanocomposites exhibited a higher response upon exposure to H2S, and the response toward 50 ppm of H2S at 70 °C was 108 with the response and recovery time being 23 and 44 s. Because of the favorable energy band alignment, the MWCNTs can serve as the acceptor of the electrons that are injected from H2S into SnO2 quantum dots in addition to the charge transport highway to direct the electron flow to the electrode, thereby enhancing the sensor response. Our research results open an easy pathway for developing highly sensitive and low-cost gas sensors. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b10188 |