Loading…
Integrating high-rate DAF technology into plant design
Compared with sedimentation, dissolved-air flotation (DAF) is a more efficient clarification process for separating floc particles, which are often low in density. This article investigates the use of short flocculation times with high DAF and filter hydraulic loading rates and examines the feasibil...
Saved in:
Published in: | Journal - American Water Works Association 1999-12, Vol.91 (12), p.41-53 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3819-f1cf66063150228e3458df6bb0f04a17ffbd79b4d23653b7973f47e146c99a253 |
---|---|
cites | cdi_FETCH-LOGICAL-c3819-f1cf66063150228e3458df6bb0f04a17ffbd79b4d23653b7973f47e146c99a253 |
container_end_page | 53 |
container_issue | 12 |
container_start_page | 41 |
container_title | Journal - American Water Works Association |
container_volume | 91 |
creator | Edzwald, James K. Tobiason, John E. Amato, Tony Maggi, Lawrence J. |
description | Compared with sedimentation, dissolved-air flotation (DAF) is a more efficient clarification process for separating floc particles, which are often low in density. This article investigates the use of short flocculation times with high DAF and filter hydraulic loading rates and examines the feasibility of integrating high-rate DAF technology into water facility design. Research was conducted at pilot scale using two water sources of varying quality. Numerous runs were carried out under extremely conservative cold water conditions of 3-5°C. The most important research finding is that integration of high-rate DAF treatment technology is feasible. DAF treatment facilities may be designed and operated with flocculation times of 5 min, DAF hydraulic loading rates of 30-40 m/h (12-16 gpm/sq ft) depending on water temperature, and high filtration rates of 20 m/h (8 gpm/sq ft). At higher DAF loading rates, excess air bubbles can be eliminated by internal or external air removal methods. |
doi_str_mv | 10.1002/j.1551-8833.1999.tb08749.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17608886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41296845</jstor_id><sourcerecordid>41296845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3819-f1cf66063150228e3458df6bb0f04a17ffbd79b4d23653b7973f47e146c99a253</originalsourceid><addsrcrecordid>eNqVkMtKxDAUhoMoOF4eQSgi7lpzcmvirngHwY2iu5B2kk5LbcekgzNvb8YZFNy5ygn58v2HH6FTwBlgTC7aDDiHVEpKM1BKZWOJZc5UttxBk5-nXTTBGNMUOH7bRwchtPEKHNgEiYd-tLU3Y9PXyaypZ2mcbXJd3CajrWb90A31Kmn6cUjmnenHZGpDU_dHaM-ZLtjj7XmIXm5vnq_u08enu4er4jGtqASVOqicEFjQmEyItJRxOXWiLLHDzEDuXDnNVcmmhApOy1zl1LHcAhOVUoZweojON965Hz4WNoz6vQmV7eIqdlgEDbnAUkoRwdM_YDssfB9304QAl4QCi9DlBqr8EIK3Ts998278SgPW6z51q9el6XVpet2n3vapl_Hz2TbBhMp0zpu-asKvAZRgPI9YscE-m86u_hGgi9fX4nuOjpONow3j4H8cDIgSknH6BdoXkj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221582314</pqid></control><display><type>article</type><title>Integrating high-rate DAF technology into plant design</title><source>Wiley</source><source>JSTOR</source><creator>Edzwald, James K. ; Tobiason, John E. ; Amato, Tony ; Maggi, Lawrence J.</creator><creatorcontrib>Edzwald, James K. ; Tobiason, John E. ; Amato, Tony ; Maggi, Lawrence J.</creatorcontrib><description>Compared with sedimentation, dissolved-air flotation (DAF) is a more efficient clarification process for separating floc particles, which are often low in density. This article investigates the use of short flocculation times with high DAF and filter hydraulic loading rates and examines the feasibility of integrating high-rate DAF technology into water facility design. Research was conducted at pilot scale using two water sources of varying quality. Numerous runs were carried out under extremely conservative cold water conditions of 3-5°C. The most important research finding is that integration of high-rate DAF treatment technology is feasible. DAF treatment facilities may be designed and operated with flocculation times of 5 min, DAF hydraulic loading rates of 30-40 m/h (12-16 gpm/sq ft) depending on water temperature, and high filtration rates of 20 m/h (8 gpm/sq ft). At higher DAF loading rates, excess air bubbles can be eliminated by internal or external air removal methods.</description><identifier>ISSN: 0003-150X</identifier><identifier>EISSN: 1551-8833</identifier><identifier>DOI: 10.1002/j.1551-8833.1999.tb08749.x</identifier><identifier>CODEN: JAWWA5</identifier><language>eng</language><publisher>Denver, CO: American Water Works Association</publisher><subject>Applied sciences ; Bubbles ; Clarification ; Cold water ; Design ; Disinfection & disinfectants ; Dissolved Air Flotation ; Drinking water and swimming-pool water. Desalination ; Exact sciences and technology ; Experiments ; Flocculation ; Hydraulics ; Loading ; Loading rate ; Onsite ; Pilot Plants ; Pilot projects ; Pollution ; Pretreatment ; Sedimentation & deposition ; Supplies ; Surface water ; Temperature ; Turbidity ; Water filtration ; Water quality ; Water temperature ; Water treatment ; Water treatment and pollution</subject><ispartof>Journal - American Water Works Association, 1999-12, Vol.91 (12), p.41-53</ispartof><rights>Copyright© 1999 AWWA</rights><rights>1999 American Water Works Association</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Water Works Association Dec 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3819-f1cf66063150228e3458df6bb0f04a17ffbd79b4d23653b7973f47e146c99a253</citedby><cites>FETCH-LOGICAL-c3819-f1cf66063150228e3458df6bb0f04a17ffbd79b4d23653b7973f47e146c99a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41296845$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41296845$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1196457$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Edzwald, James K.</creatorcontrib><creatorcontrib>Tobiason, John E.</creatorcontrib><creatorcontrib>Amato, Tony</creatorcontrib><creatorcontrib>Maggi, Lawrence J.</creatorcontrib><title>Integrating high-rate DAF technology into plant design</title><title>Journal - American Water Works Association</title><description>Compared with sedimentation, dissolved-air flotation (DAF) is a more efficient clarification process for separating floc particles, which are often low in density. This article investigates the use of short flocculation times with high DAF and filter hydraulic loading rates and examines the feasibility of integrating high-rate DAF technology into water facility design. Research was conducted at pilot scale using two water sources of varying quality. Numerous runs were carried out under extremely conservative cold water conditions of 3-5°C. The most important research finding is that integration of high-rate DAF treatment technology is feasible. DAF treatment facilities may be designed and operated with flocculation times of 5 min, DAF hydraulic loading rates of 30-40 m/h (12-16 gpm/sq ft) depending on water temperature, and high filtration rates of 20 m/h (8 gpm/sq ft). At higher DAF loading rates, excess air bubbles can be eliminated by internal or external air removal methods.</description><subject>Applied sciences</subject><subject>Bubbles</subject><subject>Clarification</subject><subject>Cold water</subject><subject>Design</subject><subject>Disinfection & disinfectants</subject><subject>Dissolved Air Flotation</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Flocculation</subject><subject>Hydraulics</subject><subject>Loading</subject><subject>Loading rate</subject><subject>Onsite</subject><subject>Pilot Plants</subject><subject>Pilot projects</subject><subject>Pollution</subject><subject>Pretreatment</subject><subject>Sedimentation & deposition</subject><subject>Supplies</subject><subject>Surface water</subject><subject>Temperature</subject><subject>Turbidity</subject><subject>Water filtration</subject><subject>Water quality</subject><subject>Water temperature</subject><subject>Water treatment</subject><subject>Water treatment and pollution</subject><issn>0003-150X</issn><issn>1551-8833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqVkMtKxDAUhoMoOF4eQSgi7lpzcmvirngHwY2iu5B2kk5LbcekgzNvb8YZFNy5ygn58v2HH6FTwBlgTC7aDDiHVEpKM1BKZWOJZc5UttxBk5-nXTTBGNMUOH7bRwchtPEKHNgEiYd-tLU3Y9PXyaypZ2mcbXJd3CajrWb90A31Kmn6cUjmnenHZGpDU_dHaM-ZLtjj7XmIXm5vnq_u08enu4er4jGtqASVOqicEFjQmEyItJRxOXWiLLHDzEDuXDnNVcmmhApOy1zl1LHcAhOVUoZweojON965Hz4WNoz6vQmV7eIqdlgEDbnAUkoRwdM_YDssfB9304QAl4QCi9DlBqr8EIK3Ts998278SgPW6z51q9el6XVpet2n3vapl_Hz2TbBhMp0zpu-asKvAZRgPI9YscE-m86u_hGgi9fX4nuOjpONow3j4H8cDIgSknH6BdoXkj8</recordid><startdate>199912</startdate><enddate>199912</enddate><creator>Edzwald, James K.</creator><creator>Tobiason, John E.</creator><creator>Amato, Tony</creator><creator>Maggi, Lawrence J.</creator><general>American Water Works Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7X7</scope><scope>7XB</scope><scope>883</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0F</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>199912</creationdate><title>Integrating high-rate DAF technology into plant design</title><author>Edzwald, James K. ; Tobiason, John E. ; Amato, Tony ; Maggi, Lawrence J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3819-f1cf66063150228e3458df6bb0f04a17ffbd79b4d23653b7973f47e146c99a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Bubbles</topic><topic>Clarification</topic><topic>Cold water</topic><topic>Design</topic><topic>Disinfection & disinfectants</topic><topic>Dissolved Air Flotation</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Flocculation</topic><topic>Hydraulics</topic><topic>Loading</topic><topic>Loading rate</topic><topic>Onsite</topic><topic>Pilot Plants</topic><topic>Pilot projects</topic><topic>Pollution</topic><topic>Pretreatment</topic><topic>Sedimentation & deposition</topic><topic>Supplies</topic><topic>Surface water</topic><topic>Temperature</topic><topic>Turbidity</topic><topic>Water filtration</topic><topic>Water quality</topic><topic>Water temperature</topic><topic>Water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edzwald, James K.</creatorcontrib><creatorcontrib>Tobiason, John E.</creatorcontrib><creatorcontrib>Amato, Tony</creatorcontrib><creatorcontrib>Maggi, Lawrence J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Journal - American Water Works Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edzwald, James K.</au><au>Tobiason, John E.</au><au>Amato, Tony</au><au>Maggi, Lawrence J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating high-rate DAF technology into plant design</atitle><jtitle>Journal - American Water Works Association</jtitle><date>1999-12</date><risdate>1999</risdate><volume>91</volume><issue>12</issue><spage>41</spage><epage>53</epage><pages>41-53</pages><issn>0003-150X</issn><eissn>1551-8833</eissn><coden>JAWWA5</coden><abstract>Compared with sedimentation, dissolved-air flotation (DAF) is a more efficient clarification process for separating floc particles, which are often low in density. This article investigates the use of short flocculation times with high DAF and filter hydraulic loading rates and examines the feasibility of integrating high-rate DAF technology into water facility design. Research was conducted at pilot scale using two water sources of varying quality. Numerous runs were carried out under extremely conservative cold water conditions of 3-5°C. The most important research finding is that integration of high-rate DAF treatment technology is feasible. DAF treatment facilities may be designed and operated with flocculation times of 5 min, DAF hydraulic loading rates of 30-40 m/h (12-16 gpm/sq ft) depending on water temperature, and high filtration rates of 20 m/h (8 gpm/sq ft). At higher DAF loading rates, excess air bubbles can be eliminated by internal or external air removal methods.</abstract><cop>Denver, CO</cop><pub>American Water Works Association</pub><doi>10.1002/j.1551-8833.1999.tb08749.x</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-150X |
ispartof | Journal - American Water Works Association, 1999-12, Vol.91 (12), p.41-53 |
issn | 0003-150X 1551-8833 |
language | eng |
recordid | cdi_proquest_miscellaneous_17608886 |
source | Wiley; JSTOR |
subjects | Applied sciences Bubbles Clarification Cold water Design Disinfection & disinfectants Dissolved Air Flotation Drinking water and swimming-pool water. Desalination Exact sciences and technology Experiments Flocculation Hydraulics Loading Loading rate Onsite Pilot Plants Pilot projects Pollution Pretreatment Sedimentation & deposition Supplies Surface water Temperature Turbidity Water filtration Water quality Water temperature Water treatment Water treatment and pollution |
title | Integrating high-rate DAF technology into plant design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20high-rate%20DAF%20technology%20into%20plant%20design&rft.jtitle=Journal%20-%20American%20Water%20Works%20Association&rft.au=Edzwald,%20James%20K.&rft.date=1999-12&rft.volume=91&rft.issue=12&rft.spage=41&rft.epage=53&rft.pages=41-53&rft.issn=0003-150X&rft.eissn=1551-8833&rft.coden=JAWWA5&rft_id=info:doi/10.1002/j.1551-8833.1999.tb08749.x&rft_dat=%3Cjstor_proqu%3E41296845%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3819-f1cf66063150228e3458df6bb0f04a17ffbd79b4d23653b7973f47e146c99a253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=221582314&rft_id=info:pmid/&rft_jstor_id=41296845&rfr_iscdi=true |