Loading…
Hierarchical Metal-Free Nitrogen-Doped Porous Graphene/Carbon Composites as an Efficient Oxygen Reduction Reaction Catalyst
Hierarchical nitrogen-doped porous graphene/carbon (NPGC) composites were fabricated by a simple and nontemplate method. The morphology characterizations demonstrate that reduced graphene oxide was successfully coated by the carbon derived from glucose, and a well-organized and interpenetrated hiera...
Saved in:
Published in: | ACS applied materials & interfaces 2016-01, Vol.8 (2), p.1415-1423 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hierarchical nitrogen-doped porous graphene/carbon (NPGC) composites were fabricated by a simple and nontemplate method. The morphology characterizations demonstrate that reduced graphene oxide was successfully coated by the carbon derived from glucose, and a well-organized and interpenetrated hierarchical porous structure of NPGC was formed after pyrolysis at 950 °C. Notably, the prepared material, denoted as NPGC-950, has superlarge specific surface area (1510.83 m2 g–1) and relatively high content percentage of pyridinic and graphitic nitrogen. As an efficient metal-free electrocatalyst, NPGC-950 exhibits a high onset potential (0.91 V vs RHE) and a nearly four-electron pathway for oxygen reduction reaction in alkaline solution as well as stronger methanol tolerance and better long-term durability than commercial Pt/C. In view of these excellent features, the obtained hierarchical N-doped metal-free porous carbon material is a promising catalyst for oxygen reduction reaction and could be widely applied in industry. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b10642 |