Loading…
One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin
Generating molecular complexity using a single catalyst, where the requisite activation modes are sequentially exploited as the reaction proceeds, is an attractive guiding principle in synthesis. This requires that each substrate transposition exposes a catalyst activation mode (AM) to which all pre...
Saved in:
Published in: | Journal of the American Chemical Society 2016-01, Vol.138 (3), p.1040-1045 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433 |
---|---|
cites | cdi_FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433 |
container_end_page | 1045 |
container_issue | 3 |
container_start_page | 1040 |
container_title | Journal of the American Chemical Society |
container_volume | 138 |
creator | Metternich, Jan B Gilmour, Ryan |
description | Generating molecular complexity using a single catalyst, where the requisite activation modes are sequentially exploited as the reaction proceeds, is an attractive guiding principle in synthesis. This requires that each substrate transposition exposes a catalyst activation mode (AM) to which all preceding or future intermediates are resistant. While this concept is exemplified by MacMillan’s beautiful merger of enamine and iminium ion activation, examples in other fields of contemporary catalysis remain elusive. Herein, we extend this tactic to organic photochemistry. By harnessing the two discrete photochemical activation modes of (−)-riboflavin, it is possible to sequentially induce isomerization and cyclization by energy transfer (E T) and single-electron transfer (SET) activation pathways, respectively. This catalytic approach has been utilized to emulate the coumarin biosynthesis pathway, which features a key photochemical E → Z isomerization step. Since the ensuing SET-based cyclization eliminates the need for a prefunctionalized aryl ring, this constitutes a novel disconnection of a pharmaceutically important scaffold. |
doi_str_mv | 10.1021/jacs.5b12081 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1761081866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1761081866</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EoqWwY428BKkptpM4CbtSlYdUVMRjHTmu3bpK7RI7RRE_wJpP5EtwaYENq9FI597RHACOMephRPD5nHHbiwtMUIp3QBvHBAUxJnQXtBFCJEhSGrbAgbVzv0YkxfugRWiCIxqjNngbawHvZ8YZzhwrG-u6UMM-d2rFnDIa3pmJsPDRVcyJaQOlqeCAWc4mws_vhLIXcLioS8_rKRyYesEqpeGlMrbRbiY8AF-Vm8HTz_ePs-BBFUaWbKX0IdiTrLTiaDs74Plq-DS4CUbj69tBfxSwkEQuYCiJMpLSSHLMmEgo5kjSUIacplmc8QRnWYhEGkuUFSmVlIYxLwpJogKzJArDDjjd9C4r81IL6_KFslyUJdPC1DbHvtLLS32wA7oblFfG2krIfFkp_0-TY5Svdedr3flWt8dPts11sRCTX_jH79_pdWpu6kr7R__v-gKL4Ino</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761081866</pqid></control><display><type>article</type><title>One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Metternich, Jan B ; Gilmour, Ryan</creator><creatorcontrib>Metternich, Jan B ; Gilmour, Ryan</creatorcontrib><description>Generating molecular complexity using a single catalyst, where the requisite activation modes are sequentially exploited as the reaction proceeds, is an attractive guiding principle in synthesis. This requires that each substrate transposition exposes a catalyst activation mode (AM) to which all preceding or future intermediates are resistant. While this concept is exemplified by MacMillan’s beautiful merger of enamine and iminium ion activation, examples in other fields of contemporary catalysis remain elusive. Herein, we extend this tactic to organic photochemistry. By harnessing the two discrete photochemical activation modes of (−)-riboflavin, it is possible to sequentially induce isomerization and cyclization by energy transfer (E T) and single-electron transfer (SET) activation pathways, respectively. This catalytic approach has been utilized to emulate the coumarin biosynthesis pathway, which features a key photochemical E → Z isomerization step. Since the ensuing SET-based cyclization eliminates the need for a prefunctionalized aryl ring, this constitutes a novel disconnection of a pharmaceutically important scaffold.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b12081</identifier><identifier>PMID: 26714650</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocatalysis ; Coumarins - chemistry ; Coumarins - metabolism ; Cyclization ; Electron Transport ; Energy Transfer ; Molecular Conformation ; Photochemical Processes ; Riboflavin - chemistry ; Riboflavin - metabolism ; Stereoisomerism</subject><ispartof>Journal of the American Chemical Society, 2016-01, Vol.138 (3), p.1040-1045</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433</citedby><cites>FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26714650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Metternich, Jan B</creatorcontrib><creatorcontrib>Gilmour, Ryan</creatorcontrib><title>One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Generating molecular complexity using a single catalyst, where the requisite activation modes are sequentially exploited as the reaction proceeds, is an attractive guiding principle in synthesis. This requires that each substrate transposition exposes a catalyst activation mode (AM) to which all preceding or future intermediates are resistant. While this concept is exemplified by MacMillan’s beautiful merger of enamine and iminium ion activation, examples in other fields of contemporary catalysis remain elusive. Herein, we extend this tactic to organic photochemistry. By harnessing the two discrete photochemical activation modes of (−)-riboflavin, it is possible to sequentially induce isomerization and cyclization by energy transfer (E T) and single-electron transfer (SET) activation pathways, respectively. This catalytic approach has been utilized to emulate the coumarin biosynthesis pathway, which features a key photochemical E → Z isomerization step. Since the ensuing SET-based cyclization eliminates the need for a prefunctionalized aryl ring, this constitutes a novel disconnection of a pharmaceutically important scaffold.</description><subject>Biocatalysis</subject><subject>Coumarins - chemistry</subject><subject>Coumarins - metabolism</subject><subject>Cyclization</subject><subject>Electron Transport</subject><subject>Energy Transfer</subject><subject>Molecular Conformation</subject><subject>Photochemical Processes</subject><subject>Riboflavin - chemistry</subject><subject>Riboflavin - metabolism</subject><subject>Stereoisomerism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAQRS0EoqWwY428BKkptpM4CbtSlYdUVMRjHTmu3bpK7RI7RRE_wJpP5EtwaYENq9FI597RHACOMephRPD5nHHbiwtMUIp3QBvHBAUxJnQXtBFCJEhSGrbAgbVzv0YkxfugRWiCIxqjNngbawHvZ8YZzhwrG-u6UMM-d2rFnDIa3pmJsPDRVcyJaQOlqeCAWc4mws_vhLIXcLioS8_rKRyYesEqpeGlMrbRbiY8AF-Vm8HTz_ePs-BBFUaWbKX0IdiTrLTiaDs74Plq-DS4CUbj69tBfxSwkEQuYCiJMpLSSHLMmEgo5kjSUIacplmc8QRnWYhEGkuUFSmVlIYxLwpJogKzJArDDjjd9C4r81IL6_KFslyUJdPC1DbHvtLLS32wA7oblFfG2krIfFkp_0-TY5Svdedr3flWt8dPts11sRCTX_jH79_pdWpu6kr7R__v-gKL4Ino</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Metternich, Jan B</creator><creator>Gilmour, Ryan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160127</creationdate><title>One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin</title><author>Metternich, Jan B ; Gilmour, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biocatalysis</topic><topic>Coumarins - chemistry</topic><topic>Coumarins - metabolism</topic><topic>Cyclization</topic><topic>Electron Transport</topic><topic>Energy Transfer</topic><topic>Molecular Conformation</topic><topic>Photochemical Processes</topic><topic>Riboflavin - chemistry</topic><topic>Riboflavin - metabolism</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metternich, Jan B</creatorcontrib><creatorcontrib>Gilmour, Ryan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metternich, Jan B</au><au>Gilmour, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-01-27</date><risdate>2016</risdate><volume>138</volume><issue>3</issue><spage>1040</spage><epage>1045</epage><pages>1040-1045</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Generating molecular complexity using a single catalyst, where the requisite activation modes are sequentially exploited as the reaction proceeds, is an attractive guiding principle in synthesis. This requires that each substrate transposition exposes a catalyst activation mode (AM) to which all preceding or future intermediates are resistant. While this concept is exemplified by MacMillan’s beautiful merger of enamine and iminium ion activation, examples in other fields of contemporary catalysis remain elusive. Herein, we extend this tactic to organic photochemistry. By harnessing the two discrete photochemical activation modes of (−)-riboflavin, it is possible to sequentially induce isomerization and cyclization by energy transfer (E T) and single-electron transfer (SET) activation pathways, respectively. This catalytic approach has been utilized to emulate the coumarin biosynthesis pathway, which features a key photochemical E → Z isomerization step. Since the ensuing SET-based cyclization eliminates the need for a prefunctionalized aryl ring, this constitutes a novel disconnection of a pharmaceutically important scaffold.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26714650</pmid><doi>10.1021/jacs.5b12081</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2016-01, Vol.138 (3), p.1040-1045 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1761081866 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Biocatalysis Coumarins - chemistry Coumarins - metabolism Cyclization Electron Transport Energy Transfer Molecular Conformation Photochemical Processes Riboflavin - chemistry Riboflavin - metabolism Stereoisomerism |
title | One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20Photocatalyst,%20n%20Activation%20Modes%20Strategy%20for%20Cascade%20Catalysis:%20Emulating%20Coumarin%20Biosynthesis%20with%20(%E2%88%92)-Riboflavin&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Metternich,%20Jan%20B&rft.date=2016-01-27&rft.volume=138&rft.issue=3&rft.spage=1040&rft.epage=1045&rft.pages=1040-1045&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b12081&rft_dat=%3Cproquest_cross%3E1761081866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1761081866&rft_id=info:pmid/26714650&rfr_iscdi=true |