Loading…

One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin

Generating molecular complexity using a single catalyst, where the requisite activation modes are sequentially exploited as the reaction proceeds, is an attractive guiding principle in synthesis. This requires that each substrate transposition exposes a catalyst activation mode (AM) to which all pre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2016-01, Vol.138 (3), p.1040-1045
Main Authors: Metternich, Jan B, Gilmour, Ryan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433
cites cdi_FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433
container_end_page 1045
container_issue 3
container_start_page 1040
container_title Journal of the American Chemical Society
container_volume 138
creator Metternich, Jan B
Gilmour, Ryan
description Generating molecular complexity using a single catalyst, where the requisite activation modes are sequentially exploited as the reaction proceeds, is an attractive guiding principle in synthesis. This requires that each substrate transposition exposes a catalyst activation mode (AM) to which all preceding or future intermediates are resistant. While this concept is exemplified by MacMillan’s beautiful merger of enamine and iminium ion activation, examples in other fields of contemporary catalysis remain elusive. Herein, we extend this tactic to organic photochemistry. By harnessing the two discrete photochemical activation modes of (−)-riboflavin, it is possible to sequentially induce isomerization and cyclization by energy transfer (E T) and single-electron transfer (SET) activation pathways, respectively. This catalytic approach has been utilized to emulate the coumarin biosynthesis pathway, which features a key photochemical E → Z isomerization step. Since the ensuing SET-based cyclization eliminates the need for a prefunctionalized aryl ring, this constitutes a novel disconnection of a pharmaceutically important scaffold.
doi_str_mv 10.1021/jacs.5b12081
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1761081866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1761081866</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EoqWwY428BKkptpM4CbtSlYdUVMRjHTmu3bpK7RI7RRE_wJpP5EtwaYENq9FI597RHACOMephRPD5nHHbiwtMUIp3QBvHBAUxJnQXtBFCJEhSGrbAgbVzv0YkxfugRWiCIxqjNngbawHvZ8YZzhwrG-u6UMM-d2rFnDIa3pmJsPDRVcyJaQOlqeCAWc4mws_vhLIXcLioS8_rKRyYesEqpeGlMrbRbiY8AF-Vm8HTz_ePs-BBFUaWbKX0IdiTrLTiaDs74Plq-DS4CUbj69tBfxSwkEQuYCiJMpLSSHLMmEgo5kjSUIacplmc8QRnWYhEGkuUFSmVlIYxLwpJogKzJArDDjjd9C4r81IL6_KFslyUJdPC1DbHvtLLS32wA7oblFfG2krIfFkp_0-TY5Svdedr3flWt8dPts11sRCTX_jH79_pdWpu6kr7R__v-gKL4Ino</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761081866</pqid></control><display><type>article</type><title>One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Metternich, Jan B ; Gilmour, Ryan</creator><creatorcontrib>Metternich, Jan B ; Gilmour, Ryan</creatorcontrib><description>Generating molecular complexity using a single catalyst, where the requisite activation modes are sequentially exploited as the reaction proceeds, is an attractive guiding principle in synthesis. This requires that each substrate transposition exposes a catalyst activation mode (AM) to which all preceding or future intermediates are resistant. While this concept is exemplified by MacMillan’s beautiful merger of enamine and iminium ion activation, examples in other fields of contemporary catalysis remain elusive. Herein, we extend this tactic to organic photochemistry. By harnessing the two discrete photochemical activation modes of (−)-riboflavin, it is possible to sequentially induce isomerization and cyclization by energy transfer (E T) and single-electron transfer (SET) activation pathways, respectively. This catalytic approach has been utilized to emulate the coumarin biosynthesis pathway, which features a key photochemical E → Z isomerization step. Since the ensuing SET-based cyclization eliminates the need for a prefunctionalized aryl ring, this constitutes a novel disconnection of a pharmaceutically important scaffold.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b12081</identifier><identifier>PMID: 26714650</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocatalysis ; Coumarins - chemistry ; Coumarins - metabolism ; Cyclization ; Electron Transport ; Energy Transfer ; Molecular Conformation ; Photochemical Processes ; Riboflavin - chemistry ; Riboflavin - metabolism ; Stereoisomerism</subject><ispartof>Journal of the American Chemical Society, 2016-01, Vol.138 (3), p.1040-1045</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433</citedby><cites>FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26714650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Metternich, Jan B</creatorcontrib><creatorcontrib>Gilmour, Ryan</creatorcontrib><title>One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Generating molecular complexity using a single catalyst, where the requisite activation modes are sequentially exploited as the reaction proceeds, is an attractive guiding principle in synthesis. This requires that each substrate transposition exposes a catalyst activation mode (AM) to which all preceding or future intermediates are resistant. While this concept is exemplified by MacMillan’s beautiful merger of enamine and iminium ion activation, examples in other fields of contemporary catalysis remain elusive. Herein, we extend this tactic to organic photochemistry. By harnessing the two discrete photochemical activation modes of (−)-riboflavin, it is possible to sequentially induce isomerization and cyclization by energy transfer (E T) and single-electron transfer (SET) activation pathways, respectively. This catalytic approach has been utilized to emulate the coumarin biosynthesis pathway, which features a key photochemical E → Z isomerization step. Since the ensuing SET-based cyclization eliminates the need for a prefunctionalized aryl ring, this constitutes a novel disconnection of a pharmaceutically important scaffold.</description><subject>Biocatalysis</subject><subject>Coumarins - chemistry</subject><subject>Coumarins - metabolism</subject><subject>Cyclization</subject><subject>Electron Transport</subject><subject>Energy Transfer</subject><subject>Molecular Conformation</subject><subject>Photochemical Processes</subject><subject>Riboflavin - chemistry</subject><subject>Riboflavin - metabolism</subject><subject>Stereoisomerism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAQRS0EoqWwY428BKkptpM4CbtSlYdUVMRjHTmu3bpK7RI7RRE_wJpP5EtwaYENq9FI597RHACOMephRPD5nHHbiwtMUIp3QBvHBAUxJnQXtBFCJEhSGrbAgbVzv0YkxfugRWiCIxqjNngbawHvZ8YZzhwrG-u6UMM-d2rFnDIa3pmJsPDRVcyJaQOlqeCAWc4mws_vhLIXcLioS8_rKRyYesEqpeGlMrbRbiY8AF-Vm8HTz_ePs-BBFUaWbKX0IdiTrLTiaDs74Plq-DS4CUbj69tBfxSwkEQuYCiJMpLSSHLMmEgo5kjSUIacplmc8QRnWYhEGkuUFSmVlIYxLwpJogKzJArDDjjd9C4r81IL6_KFslyUJdPC1DbHvtLLS32wA7oblFfG2krIfFkp_0-TY5Svdedr3flWt8dPts11sRCTX_jH79_pdWpu6kr7R__v-gKL4Ino</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Metternich, Jan B</creator><creator>Gilmour, Ryan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160127</creationdate><title>One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin</title><author>Metternich, Jan B ; Gilmour, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biocatalysis</topic><topic>Coumarins - chemistry</topic><topic>Coumarins - metabolism</topic><topic>Cyclization</topic><topic>Electron Transport</topic><topic>Energy Transfer</topic><topic>Molecular Conformation</topic><topic>Photochemical Processes</topic><topic>Riboflavin - chemistry</topic><topic>Riboflavin - metabolism</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metternich, Jan B</creatorcontrib><creatorcontrib>Gilmour, Ryan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metternich, Jan B</au><au>Gilmour, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-01-27</date><risdate>2016</risdate><volume>138</volume><issue>3</issue><spage>1040</spage><epage>1045</epage><pages>1040-1045</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Generating molecular complexity using a single catalyst, where the requisite activation modes are sequentially exploited as the reaction proceeds, is an attractive guiding principle in synthesis. This requires that each substrate transposition exposes a catalyst activation mode (AM) to which all preceding or future intermediates are resistant. While this concept is exemplified by MacMillan’s beautiful merger of enamine and iminium ion activation, examples in other fields of contemporary catalysis remain elusive. Herein, we extend this tactic to organic photochemistry. By harnessing the two discrete photochemical activation modes of (−)-riboflavin, it is possible to sequentially induce isomerization and cyclization by energy transfer (E T) and single-electron transfer (SET) activation pathways, respectively. This catalytic approach has been utilized to emulate the coumarin biosynthesis pathway, which features a key photochemical E → Z isomerization step. Since the ensuing SET-based cyclization eliminates the need for a prefunctionalized aryl ring, this constitutes a novel disconnection of a pharmaceutically important scaffold.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26714650</pmid><doi>10.1021/jacs.5b12081</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2016-01, Vol.138 (3), p.1040-1045
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1761081866
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Biocatalysis
Coumarins - chemistry
Coumarins - metabolism
Cyclization
Electron Transport
Energy Transfer
Molecular Conformation
Photochemical Processes
Riboflavin - chemistry
Riboflavin - metabolism
Stereoisomerism
title One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20Photocatalyst,%20n%20Activation%20Modes%20Strategy%20for%20Cascade%20Catalysis:%20Emulating%20Coumarin%20Biosynthesis%20with%20(%E2%88%92)-Riboflavin&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Metternich,%20Jan%20B&rft.date=2016-01-27&rft.volume=138&rft.issue=3&rft.spage=1040&rft.epage=1045&rft.pages=1040-1045&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b12081&rft_dat=%3Cproquest_cross%3E1761081866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a324t-a07492864fc1aae761c0f63f3c68959c719930e85f09b86f6635cbbf24b1a7433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1761081866&rft_id=info:pmid/26714650&rfr_iscdi=true