Loading…
Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes
Electrolytic - usually referred to as electrochemical - exfoliation of graphite in water under anodic potential holds enormous promise as a simple, green and high-yield method for the mass production of graphene, but currently suffers from several drawbacks that hinder its widespread adoption, one o...
Saved in:
Published in: | Nanoscale 2016-01, Vol.8 (5), p.2982-2998 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrolytic - usually referred to as electrochemical - exfoliation of graphite in water under anodic potential holds enormous promise as a simple, green and high-yield method for the mass production of graphene, but currently suffers from several drawbacks that hinder its widespread adoption, one of the most critical being the oxidation and subsequent structural degradation of the carbon lattice that is usually associated with such a production process. To overcome this and other limitations, we introduce and implement the concept of multifunctional electrolytes. The latter are amphiphilic anions (mostly polyaromatic hydrocarbons appended with sulfonate groups) that play different relevant roles as (1) an intercalating electrolyte to trigger exfoliation of graphite into graphene flakes, (2) a dispersant to afford stable aqueous colloidal suspensions of the flakes suitable for further use, (3) a sacrificial agent to prevent graphene oxidation during exfoliation and (4) a linker to promote nanoparticle anchoring on the graphene flakes, yielding functional hybrids. The implementation of this strategy with some selected amphiphiles even furnishes anodically exfoliated graphenes of a quality similar to that of flakes produced by direct, ultrasound- or shear-induced exfoliation of graphite in the liquid phase (
i.e.
, almost oxide- and defect-free). These high quality materials were used for the preparation of catalytically efficient graphene-Pt nanoparticle hybrids, as demonstrated by model reactions (reduction of nitroarenes). The multifunctional performance of these electrolytes is also discussed and rationalized, and a mechanistic picture of their oxidation-preventing ability is proposed. Overall, the present results open the prospect of anodic exfoliation as a competitive method for the production of very high quality graphene flakes.
Barely oxidized graphenes of a high quality could be obtained by the anodic route for the first time using a number of electrolytes of amphiphilic nature that play a multifunctional role: exfoliating electrolytes, colloidal dispersants and sacrificial agents to prevent oxidation of graphene. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c5nr06882g |