Loading…

Fundamental Insights into Nanowire Diameter Modulation and the Liquid/Solid Interface

Controlled modulation of diameter along the axis of nanowires can enhance nanowire-based device functionality, but the potential for achieving such structures with arbitrary diameter ratios has not been explored. Here, we use a theoretical approach that considers changes in the volume, wetting angle...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2013-01, Vol.13 (1), p.226-232
Main Authors: Crawford, Sam, Lim, Sung Keun, Gradečak, Silvija
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Controlled modulation of diameter along the axis of nanowires can enhance nanowire-based device functionality, but the potential for achieving such structures with arbitrary diameter ratios has not been explored. Here, we use a theoretical approach that considers changes in the volume, wetting angle, and three-dimensional morphology of seed particles during nanowire growth to understand and guide nanowire diameter modulation. We use our experimental results from diameter-modulated InN and GaN nanowires and extend our analysis to consider the potential and limitations for diameter modulation in other materials systems. We show that significant diameter modulations can be promoted for seed materials that enable substantial compositional and surface energy changes. Furthermore, we apply our model to provide insights into the morphology of the liquid/solid interface. Our approach can be used to understand and guide nanowire diameter modulation, as well as probe fundamental phenomena during nanowire growth.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl3039019