Loading…
Controlled Modulation of Diameter and Composition along Individual III–V Nitride Nanowires
Semiconducting nanowires have unique properties that are distinct from their bulk counterparts, but realization of their full potential will be ultimately dictated by the ability to control nanowire structure, composition, and size with high accuracy. Here, we report a simple, yet versatile, approac...
Saved in:
Published in: | Nano letters 2013-02, Vol.13 (2), p.331-336 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Semiconducting nanowires have unique properties that are distinct from their bulk counterparts, but realization of their full potential will be ultimately dictated by the ability to control nanowire structure, composition, and size with high accuracy. Here, we report a simple, yet versatile, approach to modulate in situ the diameter, length, and composition of individual segments within (In,Ga)N nanowires by tuning the seed particle supersaturation and size via the supply of III and V sources during the growth. By elucidating the underlying mechanisms controlling structural evolution, we demonstrate the synthesis of axial InN/InGaN nanowire heterojunctions in the nonpolar m-direction. Our approach can be applied to other materials systems and provides a foundation for future development of complex nanowire structures with enhanced functionality. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl300121p |