Loading…
Wide Bandwidth Nanowire Electromechanics on Insulating Substrates at Room Temperature
We study InAs nanowire resonators fabricated on sapphire substrate with a local gate configuration. The key advantage of using an insulating sapphire substrate is that it results in a reduced parasitic capacitance, thus allowing both wide bandwidth actuation and detection using a network analyzer as...
Saved in:
Published in: | Nano letters 2012-12, Vol.12 (12), p.6432-6435 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study InAs nanowire resonators fabricated on sapphire substrate with a local gate configuration. The key advantage of using an insulating sapphire substrate is that it results in a reduced parasitic capacitance, thus allowing both wide bandwidth actuation and detection using a network analyzer as well as signal detection at room temperature. Both in-plane and out-of-plane vibrational modes of the nanowire can be driven and the nonlinear response of the resonators studied. In addition, this technique enables the study of variation of thermal strains due to heating in nanostructures. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl303804e |