Loading…

Cell Type Determines the Light-Induced Endosomal Escape Kinetics of Multifunctional Mesoporous Silica Nanoparticles

We investigated uptake and individual endosome lysis events in fibroblast, normal, and carcinoma cell lines using a colloidal mesoporous silica (CMS) nanoparticle (NP)-based reporter system with a covalently attached photosensitizer. Endosome lysis was induced through the activation of protoporphyri...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2013-03, Vol.13 (3), p.1047-1052
Main Authors: Dobay, Maria Pamela, Schmidt, Alexandra, Mendoza, Eduardo, Bein, Thomas, Rädler, Joachim O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated uptake and individual endosome lysis events in fibroblast, normal, and carcinoma cell lines using a colloidal mesoporous silica (CMS) nanoparticle (NP)-based reporter system with a covalently attached photosensitizer. Endosome lysis was induced through the activation of protoporphyrin IX (PpIX). Surprisingly, this release-on-demand system resulted in more broadly distributed lysis times than expected, particularly for Renca, a renal carcinoma cell line. An analysis of the NP load per endosome, endosome size, and uptake characteristics indicate that Renca cells not only take up a lower amount of NPs in comparison with the fibroblast cells but also have larger endosomes and a lower NP load per endosome. We then created a stochastic model detailing steps downstream of uptake to understand how much factors that cannot be directly measured, such as variations in the PpIX load per NP, affect the lysis time distributions. Model results indicate that the distributions are primarily determined by the endosome properties, rather than variations across NPs.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl304273u