Loading…

Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene

Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni2C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of exces...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2012-04, Vol.6 (4), p.3564-3572
Main Authors: Jacobson, Peter, Stöger, Bernhard, Garhofer, Andreas, Parkinson, Gareth S, Schmid, Michael, Caudillo, Roman, Mittendorfer, Florian, Redinger, Josef, Diebold, Ulrike
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303
cites cdi_FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303
container_end_page 3572
container_issue 4
container_start_page 3564
container_title ACS nano
container_volume 6
creator Jacobson, Peter
Stöger, Bernhard
Garhofer, Andreas
Parkinson, Gareth S
Schmid, Michael
Caudillo, Roman
Mittendorfer, Florian
Redinger, Josef
Diebold, Ulrike
description Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni2C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of excess carbon, in the form of Ni2C, prevents graphene from adopting the preferred 1 × 1 configuration and leads to grain rotation. STM measurements show that residual Ni2C domains are present under rotated graphene. Nickel vacancy islands are observed at the periphery of rotated grains and indicate Ni2C dissolution after graphene growth. Density functional theory (DFT) calculations predict a very weak (van der Waals type) interaction of graphene with the underlying Ni2C, which should facilitate a phase separation of the carbide into metal-supported graphene. These results demonstrate that surface phases such as Ni2C can play a major role in the quality of epitaxial graphene.
doi_str_mv 10.1021/nn300625y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762049969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762049969</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMobk4P_gOSi6CHapI2aXLUMqcwFPwB3srXNMXMrq1JC-6_N2NzJ8HT98L38L7wIHRKyRUljF43TUyIYHy1h8ZUxSIiUrzv7zKnI3Tk_YIQnspUHKIRYwlNmOJjdPto9aepcQausKXB4DHgl3Zw2uC2wjMHtsHPbQ-9bRsc8rSzPXxbqNe_7sM05hgdVFB7c7K9E_R2N33N7qP50-whu5lHEMb6SGuliVKqiEFUnBCllaw4LeJSUyOoZlpIxgWXVUGBlZqAjCUtpKpSrXhM4gm62PR2rv0ajO_zpfXa1DU0ph18TlPBSKKUUP-jYV5SlhAW0MsNql3rvTNV3jm7BLcKUL62m-_sBvZsWzsUS1PuyF-dATjfAKB9vggWmyDkj6IfmIh-fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009812402</pqid></control><display><type>article</type><title>Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Jacobson, Peter ; Stöger, Bernhard ; Garhofer, Andreas ; Parkinson, Gareth S ; Schmid, Michael ; Caudillo, Roman ; Mittendorfer, Florian ; Redinger, Josef ; Diebold, Ulrike</creator><creatorcontrib>Jacobson, Peter ; Stöger, Bernhard ; Garhofer, Andreas ; Parkinson, Gareth S ; Schmid, Michael ; Caudillo, Roman ; Mittendorfer, Florian ; Redinger, Josef ; Diebold, Ulrike</creatorcontrib><description>Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni2C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of excess carbon, in the form of Ni2C, prevents graphene from adopting the preferred 1 × 1 configuration and leads to grain rotation. STM measurements show that residual Ni2C domains are present under rotated graphene. Nickel vacancy islands are observed at the periphery of rotated grains and indicate Ni2C dissolution after graphene growth. Density functional theory (DFT) calculations predict a very weak (van der Waals type) interaction of graphene with the underlying Ni2C, which should facilitate a phase separation of the carbide into metal-supported graphene. These results demonstrate that surface phases such as Ni2C can play a major role in the quality of epitaxial graphene.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn300625y</identifier><identifier>PMID: 22414295</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbides ; Carbon ; Chemical vapor deposition ; Density functional theory ; Epitaxy ; Grains ; Graphene ; Nickel ; Scanning tunneling microscopy</subject><ispartof>ACS nano, 2012-04, Vol.6 (4), p.3564-3572</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303</citedby><cites>FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22414295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacobson, Peter</creatorcontrib><creatorcontrib>Stöger, Bernhard</creatorcontrib><creatorcontrib>Garhofer, Andreas</creatorcontrib><creatorcontrib>Parkinson, Gareth S</creatorcontrib><creatorcontrib>Schmid, Michael</creatorcontrib><creatorcontrib>Caudillo, Roman</creatorcontrib><creatorcontrib>Mittendorfer, Florian</creatorcontrib><creatorcontrib>Redinger, Josef</creatorcontrib><creatorcontrib>Diebold, Ulrike</creatorcontrib><title>Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni2C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of excess carbon, in the form of Ni2C, prevents graphene from adopting the preferred 1 × 1 configuration and leads to grain rotation. STM measurements show that residual Ni2C domains are present under rotated graphene. Nickel vacancy islands are observed at the periphery of rotated grains and indicate Ni2C dissolution after graphene growth. Density functional theory (DFT) calculations predict a very weak (van der Waals type) interaction of graphene with the underlying Ni2C, which should facilitate a phase separation of the carbide into metal-supported graphene. These results demonstrate that surface phases such as Ni2C can play a major role in the quality of epitaxial graphene.</description><subject>Carbides</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Density functional theory</subject><subject>Epitaxy</subject><subject>Grains</subject><subject>Graphene</subject><subject>Nickel</subject><subject>Scanning tunneling microscopy</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAYhoMobk4P_gOSi6CHapI2aXLUMqcwFPwB3srXNMXMrq1JC-6_N2NzJ8HT98L38L7wIHRKyRUljF43TUyIYHy1h8ZUxSIiUrzv7zKnI3Tk_YIQnspUHKIRYwlNmOJjdPto9aepcQausKXB4DHgl3Zw2uC2wjMHtsHPbQ-9bRsc8rSzPXxbqNe_7sM05hgdVFB7c7K9E_R2N33N7qP50-whu5lHEMb6SGuliVKqiEFUnBCllaw4LeJSUyOoZlpIxgWXVUGBlZqAjCUtpKpSrXhM4gm62PR2rv0ajO_zpfXa1DU0ph18TlPBSKKUUP-jYV5SlhAW0MsNql3rvTNV3jm7BLcKUL62m-_sBvZsWzsUS1PuyF-dATjfAKB9vggWmyDkj6IfmIh-fA</recordid><startdate>20120424</startdate><enddate>20120424</enddate><creator>Jacobson, Peter</creator><creator>Stöger, Bernhard</creator><creator>Garhofer, Andreas</creator><creator>Parkinson, Gareth S</creator><creator>Schmid, Michael</creator><creator>Caudillo, Roman</creator><creator>Mittendorfer, Florian</creator><creator>Redinger, Josef</creator><creator>Diebold, Ulrike</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120424</creationdate><title>Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene</title><author>Jacobson, Peter ; Stöger, Bernhard ; Garhofer, Andreas ; Parkinson, Gareth S ; Schmid, Michael ; Caudillo, Roman ; Mittendorfer, Florian ; Redinger, Josef ; Diebold, Ulrike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carbides</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Density functional theory</topic><topic>Epitaxy</topic><topic>Grains</topic><topic>Graphene</topic><topic>Nickel</topic><topic>Scanning tunneling microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobson, Peter</creatorcontrib><creatorcontrib>Stöger, Bernhard</creatorcontrib><creatorcontrib>Garhofer, Andreas</creatorcontrib><creatorcontrib>Parkinson, Gareth S</creatorcontrib><creatorcontrib>Schmid, Michael</creatorcontrib><creatorcontrib>Caudillo, Roman</creatorcontrib><creatorcontrib>Mittendorfer, Florian</creatorcontrib><creatorcontrib>Redinger, Josef</creatorcontrib><creatorcontrib>Diebold, Ulrike</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobson, Peter</au><au>Stöger, Bernhard</au><au>Garhofer, Andreas</au><au>Parkinson, Gareth S</au><au>Schmid, Michael</au><au>Caudillo, Roman</au><au>Mittendorfer, Florian</au><au>Redinger, Josef</au><au>Diebold, Ulrike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2012-04-24</date><risdate>2012</risdate><volume>6</volume><issue>4</issue><spage>3564</spage><epage>3572</epage><pages>3564-3572</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni2C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of excess carbon, in the form of Ni2C, prevents graphene from adopting the preferred 1 × 1 configuration and leads to grain rotation. STM measurements show that residual Ni2C domains are present under rotated graphene. Nickel vacancy islands are observed at the periphery of rotated grains and indicate Ni2C dissolution after graphene growth. Density functional theory (DFT) calculations predict a very weak (van der Waals type) interaction of graphene with the underlying Ni2C, which should facilitate a phase separation of the carbide into metal-supported graphene. These results demonstrate that surface phases such as Ni2C can play a major role in the quality of epitaxial graphene.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22414295</pmid><doi>10.1021/nn300625y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2012-04, Vol.6 (4), p.3564-3572
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762049969
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Carbides
Carbon
Chemical vapor deposition
Density functional theory
Epitaxy
Grains
Graphene
Nickel
Scanning tunneling microscopy
title Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel%20Carbide%20as%20a%20Source%20of%20Grain%20Rotation%20in%20Epitaxial%20Graphene&rft.jtitle=ACS%20nano&rft.au=Jacobson,%20Peter&rft.date=2012-04-24&rft.volume=6&rft.issue=4&rft.spage=3564&rft.epage=3572&rft.pages=3564-3572&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn300625y&rft_dat=%3Cproquest_cross%3E1762049969%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1009812402&rft_id=info:pmid/22414295&rfr_iscdi=true