Loading…
Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene
Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni2C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of exces...
Saved in:
Published in: | ACS nano 2012-04, Vol.6 (4), p.3564-3572 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303 |
---|---|
cites | cdi_FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303 |
container_end_page | 3572 |
container_issue | 4 |
container_start_page | 3564 |
container_title | ACS nano |
container_volume | 6 |
creator | Jacobson, Peter Stöger, Bernhard Garhofer, Andreas Parkinson, Gareth S Schmid, Michael Caudillo, Roman Mittendorfer, Florian Redinger, Josef Diebold, Ulrike |
description | Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni2C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of excess carbon, in the form of Ni2C, prevents graphene from adopting the preferred 1 × 1 configuration and leads to grain rotation. STM measurements show that residual Ni2C domains are present under rotated graphene. Nickel vacancy islands are observed at the periphery of rotated grains and indicate Ni2C dissolution after graphene growth. Density functional theory (DFT) calculations predict a very weak (van der Waals type) interaction of graphene with the underlying Ni2C, which should facilitate a phase separation of the carbide into metal-supported graphene. These results demonstrate that surface phases such as Ni2C can play a major role in the quality of epitaxial graphene. |
doi_str_mv | 10.1021/nn300625y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762049969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762049969</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMobk4P_gOSi6CHapI2aXLUMqcwFPwB3srXNMXMrq1JC-6_N2NzJ8HT98L38L7wIHRKyRUljF43TUyIYHy1h8ZUxSIiUrzv7zKnI3Tk_YIQnspUHKIRYwlNmOJjdPto9aepcQausKXB4DHgl3Zw2uC2wjMHtsHPbQ-9bRsc8rSzPXxbqNe_7sM05hgdVFB7c7K9E_R2N33N7qP50-whu5lHEMb6SGuliVKqiEFUnBCllaw4LeJSUyOoZlpIxgWXVUGBlZqAjCUtpKpSrXhM4gm62PR2rv0ajO_zpfXa1DU0ph18TlPBSKKUUP-jYV5SlhAW0MsNql3rvTNV3jm7BLcKUL62m-_sBvZsWzsUS1PuyF-dATjfAKB9vggWmyDkj6IfmIh-fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009812402</pqid></control><display><type>article</type><title>Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Jacobson, Peter ; Stöger, Bernhard ; Garhofer, Andreas ; Parkinson, Gareth S ; Schmid, Michael ; Caudillo, Roman ; Mittendorfer, Florian ; Redinger, Josef ; Diebold, Ulrike</creator><creatorcontrib>Jacobson, Peter ; Stöger, Bernhard ; Garhofer, Andreas ; Parkinson, Gareth S ; Schmid, Michael ; Caudillo, Roman ; Mittendorfer, Florian ; Redinger, Josef ; Diebold, Ulrike</creatorcontrib><description>Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni2C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of excess carbon, in the form of Ni2C, prevents graphene from adopting the preferred 1 × 1 configuration and leads to grain rotation. STM measurements show that residual Ni2C domains are present under rotated graphene. Nickel vacancy islands are observed at the periphery of rotated grains and indicate Ni2C dissolution after graphene growth. Density functional theory (DFT) calculations predict a very weak (van der Waals type) interaction of graphene with the underlying Ni2C, which should facilitate a phase separation of the carbide into metal-supported graphene. These results demonstrate that surface phases such as Ni2C can play a major role in the quality of epitaxial graphene.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn300625y</identifier><identifier>PMID: 22414295</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbides ; Carbon ; Chemical vapor deposition ; Density functional theory ; Epitaxy ; Grains ; Graphene ; Nickel ; Scanning tunneling microscopy</subject><ispartof>ACS nano, 2012-04, Vol.6 (4), p.3564-3572</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303</citedby><cites>FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22414295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacobson, Peter</creatorcontrib><creatorcontrib>Stöger, Bernhard</creatorcontrib><creatorcontrib>Garhofer, Andreas</creatorcontrib><creatorcontrib>Parkinson, Gareth S</creatorcontrib><creatorcontrib>Schmid, Michael</creatorcontrib><creatorcontrib>Caudillo, Roman</creatorcontrib><creatorcontrib>Mittendorfer, Florian</creatorcontrib><creatorcontrib>Redinger, Josef</creatorcontrib><creatorcontrib>Diebold, Ulrike</creatorcontrib><title>Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni2C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of excess carbon, in the form of Ni2C, prevents graphene from adopting the preferred 1 × 1 configuration and leads to grain rotation. STM measurements show that residual Ni2C domains are present under rotated graphene. Nickel vacancy islands are observed at the periphery of rotated grains and indicate Ni2C dissolution after graphene growth. Density functional theory (DFT) calculations predict a very weak (van der Waals type) interaction of graphene with the underlying Ni2C, which should facilitate a phase separation of the carbide into metal-supported graphene. These results demonstrate that surface phases such as Ni2C can play a major role in the quality of epitaxial graphene.</description><subject>Carbides</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Density functional theory</subject><subject>Epitaxy</subject><subject>Grains</subject><subject>Graphene</subject><subject>Nickel</subject><subject>Scanning tunneling microscopy</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAYhoMobk4P_gOSi6CHapI2aXLUMqcwFPwB3srXNMXMrq1JC-6_N2NzJ8HT98L38L7wIHRKyRUljF43TUyIYHy1h8ZUxSIiUrzv7zKnI3Tk_YIQnspUHKIRYwlNmOJjdPto9aepcQausKXB4DHgl3Zw2uC2wjMHtsHPbQ-9bRsc8rSzPXxbqNe_7sM05hgdVFB7c7K9E_R2N33N7qP50-whu5lHEMb6SGuliVKqiEFUnBCllaw4LeJSUyOoZlpIxgWXVUGBlZqAjCUtpKpSrXhM4gm62PR2rv0ajO_zpfXa1DU0ph18TlPBSKKUUP-jYV5SlhAW0MsNql3rvTNV3jm7BLcKUL62m-_sBvZsWzsUS1PuyF-dATjfAKB9vggWmyDkj6IfmIh-fA</recordid><startdate>20120424</startdate><enddate>20120424</enddate><creator>Jacobson, Peter</creator><creator>Stöger, Bernhard</creator><creator>Garhofer, Andreas</creator><creator>Parkinson, Gareth S</creator><creator>Schmid, Michael</creator><creator>Caudillo, Roman</creator><creator>Mittendorfer, Florian</creator><creator>Redinger, Josef</creator><creator>Diebold, Ulrike</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120424</creationdate><title>Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene</title><author>Jacobson, Peter ; Stöger, Bernhard ; Garhofer, Andreas ; Parkinson, Gareth S ; Schmid, Michael ; Caudillo, Roman ; Mittendorfer, Florian ; Redinger, Josef ; Diebold, Ulrike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carbides</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Density functional theory</topic><topic>Epitaxy</topic><topic>Grains</topic><topic>Graphene</topic><topic>Nickel</topic><topic>Scanning tunneling microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobson, Peter</creatorcontrib><creatorcontrib>Stöger, Bernhard</creatorcontrib><creatorcontrib>Garhofer, Andreas</creatorcontrib><creatorcontrib>Parkinson, Gareth S</creatorcontrib><creatorcontrib>Schmid, Michael</creatorcontrib><creatorcontrib>Caudillo, Roman</creatorcontrib><creatorcontrib>Mittendorfer, Florian</creatorcontrib><creatorcontrib>Redinger, Josef</creatorcontrib><creatorcontrib>Diebold, Ulrike</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobson, Peter</au><au>Stöger, Bernhard</au><au>Garhofer, Andreas</au><au>Parkinson, Gareth S</au><au>Schmid, Michael</au><au>Caudillo, Roman</au><au>Mittendorfer, Florian</au><au>Redinger, Josef</au><au>Diebold, Ulrike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2012-04-24</date><risdate>2012</risdate><volume>6</volume><issue>4</issue><spage>3564</spage><epage>3572</epage><pages>3564-3572</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni2C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of excess carbon, in the form of Ni2C, prevents graphene from adopting the preferred 1 × 1 configuration and leads to grain rotation. STM measurements show that residual Ni2C domains are present under rotated graphene. Nickel vacancy islands are observed at the periphery of rotated grains and indicate Ni2C dissolution after graphene growth. Density functional theory (DFT) calculations predict a very weak (van der Waals type) interaction of graphene with the underlying Ni2C, which should facilitate a phase separation of the carbide into metal-supported graphene. These results demonstrate that surface phases such as Ni2C can play a major role in the quality of epitaxial graphene.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22414295</pmid><doi>10.1021/nn300625y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2012-04, Vol.6 (4), p.3564-3572 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762049969 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Carbides Carbon Chemical vapor deposition Density functional theory Epitaxy Grains Graphene Nickel Scanning tunneling microscopy |
title | Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel%20Carbide%20as%20a%20Source%20of%20Grain%20Rotation%20in%20Epitaxial%20Graphene&rft.jtitle=ACS%20nano&rft.au=Jacobson,%20Peter&rft.date=2012-04-24&rft.volume=6&rft.issue=4&rft.spage=3564&rft.epage=3572&rft.pages=3564-3572&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn300625y&rft_dat=%3Cproquest_cross%3E1762049969%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-cc9c0999b3a6f5009c98f51b3dc1e61c2c6825658fb1a2dc0a8381b89f7c95303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1009812402&rft_id=info:pmid/22414295&rfr_iscdi=true |