Loading…

Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor

Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduc...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2012-08, Vol.6 (8), p.7044-7052
Main Authors: Díez-Pérez, Ismael, Li, Zhihai, Guo, Shaoyin, Madden, Christopher, Huang, Helin, Che, Yanke, Yang, Xiaomei, Zang, Ling, Tao, Nongjian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3
cites cdi_FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3
container_end_page 7052
container_issue 8
container_start_page 7044
container_title ACS nano
container_volume 6
creator Díez-Pérez, Ismael
Li, Zhihai
Guo, Shaoyin
Madden, Christopher
Huang, Helin
Che, Yanke
Yang, Xiaomei
Zang, Ling
Tao, Nongjian
description Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduction in the highest occupied (HOMO)–lowest unoccupied (LUMO) molecular orbital energy gap associated with the electron donor character of the substituents. The small HOMO–LUMO energy gap allows for switching between electron- and hole-dominated charge transports as a function of gate voltage, thus demonstrating a single-molecule ambipolar field-effect transistor. Both the unsubstituted and substituted molecules display similar n-type behaviors, indicating that they share the same n-type conduction mechanism. However, the substituted-PTCDI block shows a peak in the source–drain current vs gate voltage characteristics for the p-type transport, which is attributed to a two-step incoherent transport via the HOMO of the molecule.
doi_str_mv 10.1021/nn302090t
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762050174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762050174</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AgipvTg19AehH0UH1J26Q5jrFNYeLBCXoqaZpqRtrMpD3s2xvp3EnwlAf5vT-PP0KXGO4wEHzftgkQ4NAdoTHmCY0hp2_HhznDI3Tm_QYgYzmjp2hECMs5xWyM3qdNqbfWCBetnWj91rou0m0k2mhulOyclZ-q0VIYs4uWolNV9KLbD6PiJxv-e6OihVamiud1HfgQon1n3Tk6qYXx6mL_TtDrYr6ePcSr5-XjbLqKRYrTLqZQK6J4KbmURJaEVxVkEiQVhBMMgiUyp0mV5JDjcDOnQFJgeVAl55KpZIJuhtyts1-98l3RaC-VMaJVtvcFZpRABpil_1NIaM542Aj0dqDSWe-dqout041wu4CKn9KLQ-nBXu1j-7JR1UH-thzA9QCE9MXG9q4NhfwR9A0MEIf5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1036879176</pqid></control><display><type>article</type><title>Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Díez-Pérez, Ismael ; Li, Zhihai ; Guo, Shaoyin ; Madden, Christopher ; Huang, Helin ; Che, Yanke ; Yang, Xiaomei ; Zang, Ling ; Tao, Nongjian</creator><creatorcontrib>Díez-Pérez, Ismael ; Li, Zhihai ; Guo, Shaoyin ; Madden, Christopher ; Huang, Helin ; Che, Yanke ; Yang, Xiaomei ; Zang, Ling ; Tao, Nongjian</creatorcontrib><description>Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduction in the highest occupied (HOMO)–lowest unoccupied (LUMO) molecular orbital energy gap associated with the electron donor character of the substituents. The small HOMO–LUMO energy gap allows for switching between electron- and hole-dominated charge transports as a function of gate voltage, thus demonstrating a single-molecule ambipolar field-effect transistor. Both the unsubstituted and substituted molecules display similar n-type behaviors, indicating that they share the same n-type conduction mechanism. However, the substituted-PTCDI block shows a peak in the source–drain current vs gate voltage characteristics for the p-type transport, which is attributed to a two-step incoherent transport via the HOMO of the molecule.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn302090t</identifier><identifier>PMID: 22789617</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Blocking ; Charge transport ; Electric potential ; Electrochemistry - instrumentation ; Electron Transport ; Energy gap ; Equipment Design ; Equipment Failure Analysis ; Field effect transistors ; Gates ; Materials Testing ; Molecular orbitals ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Signal Processing, Computer-Assisted - instrumentation ; Transistors, Electronic ; Transport ; Voltage</subject><ispartof>ACS nano, 2012-08, Vol.6 (8), p.7044-7052</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3</citedby><cites>FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22789617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Díez-Pérez, Ismael</creatorcontrib><creatorcontrib>Li, Zhihai</creatorcontrib><creatorcontrib>Guo, Shaoyin</creatorcontrib><creatorcontrib>Madden, Christopher</creatorcontrib><creatorcontrib>Huang, Helin</creatorcontrib><creatorcontrib>Che, Yanke</creatorcontrib><creatorcontrib>Yang, Xiaomei</creatorcontrib><creatorcontrib>Zang, Ling</creatorcontrib><creatorcontrib>Tao, Nongjian</creatorcontrib><title>Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduction in the highest occupied (HOMO)–lowest unoccupied (LUMO) molecular orbital energy gap associated with the electron donor character of the substituents. The small HOMO–LUMO energy gap allows for switching between electron- and hole-dominated charge transports as a function of gate voltage, thus demonstrating a single-molecule ambipolar field-effect transistor. Both the unsubstituted and substituted molecules display similar n-type behaviors, indicating that they share the same n-type conduction mechanism. However, the substituted-PTCDI block shows a peak in the source–drain current vs gate voltage characteristics for the p-type transport, which is attributed to a two-step incoherent transport via the HOMO of the molecule.</description><subject>Blocking</subject><subject>Charge transport</subject><subject>Electric potential</subject><subject>Electrochemistry - instrumentation</subject><subject>Electron Transport</subject><subject>Energy gap</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Field effect transistors</subject><subject>Gates</subject><subject>Materials Testing</subject><subject>Molecular orbitals</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Transistors, Electronic</subject><subject>Transport</subject><subject>Voltage</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0EFLwzAUB_AgipvTg19AehH0UH1J26Q5jrFNYeLBCXoqaZpqRtrMpD3s2xvp3EnwlAf5vT-PP0KXGO4wEHzftgkQ4NAdoTHmCY0hp2_HhznDI3Tm_QYgYzmjp2hECMs5xWyM3qdNqbfWCBetnWj91rou0m0k2mhulOyclZ-q0VIYs4uWolNV9KLbD6PiJxv-e6OihVamiud1HfgQon1n3Tk6qYXx6mL_TtDrYr6ePcSr5-XjbLqKRYrTLqZQK6J4KbmURJaEVxVkEiQVhBMMgiUyp0mV5JDjcDOnQFJgeVAl55KpZIJuhtyts1-98l3RaC-VMaJVtvcFZpRABpil_1NIaM542Aj0dqDSWe-dqout041wu4CKn9KLQ-nBXu1j-7JR1UH-thzA9QCE9MXG9q4NhfwR9A0MEIf5</recordid><startdate>20120828</startdate><enddate>20120828</enddate><creator>Díez-Pérez, Ismael</creator><creator>Li, Zhihai</creator><creator>Guo, Shaoyin</creator><creator>Madden, Christopher</creator><creator>Huang, Helin</creator><creator>Che, Yanke</creator><creator>Yang, Xiaomei</creator><creator>Zang, Ling</creator><creator>Tao, Nongjian</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120828</creationdate><title>Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor</title><author>Díez-Pérez, Ismael ; Li, Zhihai ; Guo, Shaoyin ; Madden, Christopher ; Huang, Helin ; Che, Yanke ; Yang, Xiaomei ; Zang, Ling ; Tao, Nongjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Blocking</topic><topic>Charge transport</topic><topic>Electric potential</topic><topic>Electrochemistry - instrumentation</topic><topic>Electron Transport</topic><topic>Energy gap</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Field effect transistors</topic><topic>Gates</topic><topic>Materials Testing</topic><topic>Molecular orbitals</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Transistors, Electronic</topic><topic>Transport</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díez-Pérez, Ismael</creatorcontrib><creatorcontrib>Li, Zhihai</creatorcontrib><creatorcontrib>Guo, Shaoyin</creatorcontrib><creatorcontrib>Madden, Christopher</creatorcontrib><creatorcontrib>Huang, Helin</creatorcontrib><creatorcontrib>Che, Yanke</creatorcontrib><creatorcontrib>Yang, Xiaomei</creatorcontrib><creatorcontrib>Zang, Ling</creatorcontrib><creatorcontrib>Tao, Nongjian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díez-Pérez, Ismael</au><au>Li, Zhihai</au><au>Guo, Shaoyin</au><au>Madden, Christopher</au><au>Huang, Helin</au><au>Che, Yanke</au><au>Yang, Xiaomei</au><au>Zang, Ling</au><au>Tao, Nongjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2012-08-28</date><risdate>2012</risdate><volume>6</volume><issue>8</issue><spage>7044</spage><epage>7052</epage><pages>7044-7052</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduction in the highest occupied (HOMO)–lowest unoccupied (LUMO) molecular orbital energy gap associated with the electron donor character of the substituents. The small HOMO–LUMO energy gap allows for switching between electron- and hole-dominated charge transports as a function of gate voltage, thus demonstrating a single-molecule ambipolar field-effect transistor. Both the unsubstituted and substituted molecules display similar n-type behaviors, indicating that they share the same n-type conduction mechanism. However, the substituted-PTCDI block shows a peak in the source–drain current vs gate voltage characteristics for the p-type transport, which is attributed to a two-step incoherent transport via the HOMO of the molecule.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22789617</pmid><doi>10.1021/nn302090t</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2012-08, Vol.6 (8), p.7044-7052
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762050174
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Blocking
Charge transport
Electric potential
Electrochemistry - instrumentation
Electron Transport
Energy gap
Equipment Design
Equipment Failure Analysis
Field effect transistors
Gates
Materials Testing
Molecular orbitals
Nanostructures - chemistry
Nanostructures - ultrastructure
Particle Size
Signal Processing, Computer-Assisted - instrumentation
Transistors, Electronic
Transport
Voltage
title Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ambipolar%20Transport%20in%20an%20Electrochemically%20Gated%20Single-Molecule%20Field-Effect%20Transistor&rft.jtitle=ACS%20nano&rft.au=Di%CC%81ez-Pe%CC%81rez,%20Ismael&rft.date=2012-08-28&rft.volume=6&rft.issue=8&rft.spage=7044&rft.epage=7052&rft.pages=7044-7052&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn302090t&rft_dat=%3Cproquest_cross%3E1762050174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1036879176&rft_id=info:pmid/22789617&rfr_iscdi=true