Loading…
Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor
Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduc...
Saved in:
Published in: | ACS nano 2012-08, Vol.6 (8), p.7044-7052 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3 |
container_end_page | 7052 |
container_issue | 8 |
container_start_page | 7044 |
container_title | ACS nano |
container_volume | 6 |
creator | Díez-Pérez, Ismael Li, Zhihai Guo, Shaoyin Madden, Christopher Huang, Helin Che, Yanke Yang, Xiaomei Zang, Ling Tao, Nongjian |
description | Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduction in the highest occupied (HOMO)–lowest unoccupied (LUMO) molecular orbital energy gap associated with the electron donor character of the substituents. The small HOMO–LUMO energy gap allows for switching between electron- and hole-dominated charge transports as a function of gate voltage, thus demonstrating a single-molecule ambipolar field-effect transistor. Both the unsubstituted and substituted molecules display similar n-type behaviors, indicating that they share the same n-type conduction mechanism. However, the substituted-PTCDI block shows a peak in the source–drain current vs gate voltage characteristics for the p-type transport, which is attributed to a two-step incoherent transport via the HOMO of the molecule. |
doi_str_mv | 10.1021/nn302090t |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762050174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762050174</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AgipvTg19AehH0UH1J26Q5jrFNYeLBCXoqaZpqRtrMpD3s2xvp3EnwlAf5vT-PP0KXGO4wEHzftgkQ4NAdoTHmCY0hp2_HhznDI3Tm_QYgYzmjp2hECMs5xWyM3qdNqbfWCBetnWj91rou0m0k2mhulOyclZ-q0VIYs4uWolNV9KLbD6PiJxv-e6OihVamiud1HfgQon1n3Tk6qYXx6mL_TtDrYr6ePcSr5-XjbLqKRYrTLqZQK6J4KbmURJaEVxVkEiQVhBMMgiUyp0mV5JDjcDOnQFJgeVAl55KpZIJuhtyts1-98l3RaC-VMaJVtvcFZpRABpil_1NIaM542Aj0dqDSWe-dqout041wu4CKn9KLQ-nBXu1j-7JR1UH-thzA9QCE9MXG9q4NhfwR9A0MEIf5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1036879176</pqid></control><display><type>article</type><title>Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Díez-Pérez, Ismael ; Li, Zhihai ; Guo, Shaoyin ; Madden, Christopher ; Huang, Helin ; Che, Yanke ; Yang, Xiaomei ; Zang, Ling ; Tao, Nongjian</creator><creatorcontrib>Díez-Pérez, Ismael ; Li, Zhihai ; Guo, Shaoyin ; Madden, Christopher ; Huang, Helin ; Che, Yanke ; Yang, Xiaomei ; Zang, Ling ; Tao, Nongjian</creatorcontrib><description>Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduction in the highest occupied (HOMO)–lowest unoccupied (LUMO) molecular orbital energy gap associated with the electron donor character of the substituents. The small HOMO–LUMO energy gap allows for switching between electron- and hole-dominated charge transports as a function of gate voltage, thus demonstrating a single-molecule ambipolar field-effect transistor. Both the unsubstituted and substituted molecules display similar n-type behaviors, indicating that they share the same n-type conduction mechanism. However, the substituted-PTCDI block shows a peak in the source–drain current vs gate voltage characteristics for the p-type transport, which is attributed to a two-step incoherent transport via the HOMO of the molecule.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn302090t</identifier><identifier>PMID: 22789617</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Blocking ; Charge transport ; Electric potential ; Electrochemistry - instrumentation ; Electron Transport ; Energy gap ; Equipment Design ; Equipment Failure Analysis ; Field effect transistors ; Gates ; Materials Testing ; Molecular orbitals ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Signal Processing, Computer-Assisted - instrumentation ; Transistors, Electronic ; Transport ; Voltage</subject><ispartof>ACS nano, 2012-08, Vol.6 (8), p.7044-7052</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3</citedby><cites>FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22789617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Díez-Pérez, Ismael</creatorcontrib><creatorcontrib>Li, Zhihai</creatorcontrib><creatorcontrib>Guo, Shaoyin</creatorcontrib><creatorcontrib>Madden, Christopher</creatorcontrib><creatorcontrib>Huang, Helin</creatorcontrib><creatorcontrib>Che, Yanke</creatorcontrib><creatorcontrib>Yang, Xiaomei</creatorcontrib><creatorcontrib>Zang, Ling</creatorcontrib><creatorcontrib>Tao, Nongjian</creatorcontrib><title>Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduction in the highest occupied (HOMO)–lowest unoccupied (LUMO) molecular orbital energy gap associated with the electron donor character of the substituents. The small HOMO–LUMO energy gap allows for switching between electron- and hole-dominated charge transports as a function of gate voltage, thus demonstrating a single-molecule ambipolar field-effect transistor. Both the unsubstituted and substituted molecules display similar n-type behaviors, indicating that they share the same n-type conduction mechanism. However, the substituted-PTCDI block shows a peak in the source–drain current vs gate voltage characteristics for the p-type transport, which is attributed to a two-step incoherent transport via the HOMO of the molecule.</description><subject>Blocking</subject><subject>Charge transport</subject><subject>Electric potential</subject><subject>Electrochemistry - instrumentation</subject><subject>Electron Transport</subject><subject>Energy gap</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Field effect transistors</subject><subject>Gates</subject><subject>Materials Testing</subject><subject>Molecular orbitals</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Transistors, Electronic</subject><subject>Transport</subject><subject>Voltage</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0EFLwzAUB_AgipvTg19AehH0UH1J26Q5jrFNYeLBCXoqaZpqRtrMpD3s2xvp3EnwlAf5vT-PP0KXGO4wEHzftgkQ4NAdoTHmCY0hp2_HhznDI3Tm_QYgYzmjp2hECMs5xWyM3qdNqbfWCBetnWj91rou0m0k2mhulOyclZ-q0VIYs4uWolNV9KLbD6PiJxv-e6OihVamiud1HfgQon1n3Tk6qYXx6mL_TtDrYr6ePcSr5-XjbLqKRYrTLqZQK6J4KbmURJaEVxVkEiQVhBMMgiUyp0mV5JDjcDOnQFJgeVAl55KpZIJuhtyts1-98l3RaC-VMaJVtvcFZpRABpil_1NIaM542Aj0dqDSWe-dqout041wu4CKn9KLQ-nBXu1j-7JR1UH-thzA9QCE9MXG9q4NhfwR9A0MEIf5</recordid><startdate>20120828</startdate><enddate>20120828</enddate><creator>Díez-Pérez, Ismael</creator><creator>Li, Zhihai</creator><creator>Guo, Shaoyin</creator><creator>Madden, Christopher</creator><creator>Huang, Helin</creator><creator>Che, Yanke</creator><creator>Yang, Xiaomei</creator><creator>Zang, Ling</creator><creator>Tao, Nongjian</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120828</creationdate><title>Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor</title><author>Díez-Pérez, Ismael ; Li, Zhihai ; Guo, Shaoyin ; Madden, Christopher ; Huang, Helin ; Che, Yanke ; Yang, Xiaomei ; Zang, Ling ; Tao, Nongjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Blocking</topic><topic>Charge transport</topic><topic>Electric potential</topic><topic>Electrochemistry - instrumentation</topic><topic>Electron Transport</topic><topic>Energy gap</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Field effect transistors</topic><topic>Gates</topic><topic>Materials Testing</topic><topic>Molecular orbitals</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Transistors, Electronic</topic><topic>Transport</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díez-Pérez, Ismael</creatorcontrib><creatorcontrib>Li, Zhihai</creatorcontrib><creatorcontrib>Guo, Shaoyin</creatorcontrib><creatorcontrib>Madden, Christopher</creatorcontrib><creatorcontrib>Huang, Helin</creatorcontrib><creatorcontrib>Che, Yanke</creatorcontrib><creatorcontrib>Yang, Xiaomei</creatorcontrib><creatorcontrib>Zang, Ling</creatorcontrib><creatorcontrib>Tao, Nongjian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díez-Pérez, Ismael</au><au>Li, Zhihai</au><au>Guo, Shaoyin</au><au>Madden, Christopher</au><au>Huang, Helin</au><au>Che, Yanke</au><au>Yang, Xiaomei</au><au>Zang, Ling</au><au>Tao, Nongjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2012-08-28</date><risdate>2012</risdate><volume>6</volume><issue>8</issue><spage>7044</spage><epage>7052</epage><pages>7044-7052</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduction in the highest occupied (HOMO)–lowest unoccupied (LUMO) molecular orbital energy gap associated with the electron donor character of the substituents. The small HOMO–LUMO energy gap allows for switching between electron- and hole-dominated charge transports as a function of gate voltage, thus demonstrating a single-molecule ambipolar field-effect transistor. Both the unsubstituted and substituted molecules display similar n-type behaviors, indicating that they share the same n-type conduction mechanism. However, the substituted-PTCDI block shows a peak in the source–drain current vs gate voltage characteristics for the p-type transport, which is attributed to a two-step incoherent transport via the HOMO of the molecule.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22789617</pmid><doi>10.1021/nn302090t</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2012-08, Vol.6 (8), p.7044-7052 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762050174 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Blocking Charge transport Electric potential Electrochemistry - instrumentation Electron Transport Energy gap Equipment Design Equipment Failure Analysis Field effect transistors Gates Materials Testing Molecular orbitals Nanostructures - chemistry Nanostructures - ultrastructure Particle Size Signal Processing, Computer-Assisted - instrumentation Transistors, Electronic Transport Voltage |
title | Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ambipolar%20Transport%20in%20an%20Electrochemically%20Gated%20Single-Molecule%20Field-Effect%20Transistor&rft.jtitle=ACS%20nano&rft.au=Di%CC%81ez-Pe%CC%81rez,%20Ismael&rft.date=2012-08-28&rft.volume=6&rft.issue=8&rft.spage=7044&rft.epage=7052&rft.pages=7044-7052&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn302090t&rft_dat=%3Cproquest_cross%3E1762050174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-60fe2e9bc9cc2cb29dd05c0c6a29210a73c863d3808189696024078dd0b99c7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1036879176&rft_id=info:pmid/22789617&rfr_iscdi=true |