Loading…
Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study
We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO2 substrates. We find no preferential orientation angle between grains, and the GBs a...
Saved in:
Published in: | ACS nano 2013-01, Vol.7 (1), p.75-86 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93 |
---|---|
cites | cdi_FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93 |
container_end_page | 86 |
container_issue | 1 |
container_start_page | 75 |
container_title | ACS nano |
container_volume | 7 |
creator | Koepke, Justin C Wood, Joshua D Estrada, David Ong, Zhun-Yong He, Kevin T Pop, Eric Lyding, Joseph W |
description | We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO2 substrates. We find no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and SiO2 topography. Scanning tunneling spectroscopy shows enhanced empty states tunneling conductance for most of the GBs and a shift toward more n-type behavior compared to the bulk of the graphene. We also observe standing wave patterns adjacent to GBs propagating in a zigzag direction with a decay length of ∼1 nm. Fourier analysis of these patterns indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene. |
doi_str_mv | 10.1021/nn302064p |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762050314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273776283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93</originalsourceid><addsrcrecordid>eNqFkUtL9DAUhoN84n3hH5BsPtBFNZe2ad2NgzdQFFRwVzLpiUY6SU1SYf6Ev9mU0VkJrvJyePLAOS9C-5QcU8LoibWcMFLm_RraojUvM1KVz_9WuaCbaDuEN0IKUYlyA20yzrggrNxCn5Po5kZlD0p2gM8_TAtWAdbO43sXwUYjO3wmvTfgA5a2xQ_RO_uCp8sZTh9jBG_SSEZ86WX_ChbGYCw-c4NtZeLCKZ6MqLUj-DhYC92Ybo3yLijXL5J3aBe7aF3LLsDe97uDni7OH6dX2c3d5fV0cpPJnOYxq6CuNSkKzXKm01qk1CCKVgtNck35jBRciVnNVN3OqGaCs0pUVBKiGOWlrvkOOlx6e-_eBwixmZugoOukBTeEhoqSJS2n-d9o0ouEVzyhR0t0XCp40E3vzVz6RUNJMzbVrJpK7MG3dpjNoV2RP9Uk4P8SkCo0b27wNh3kF9EXt4madQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273776283</pqid></control><display><type>article</type><title>Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Koepke, Justin C ; Wood, Joshua D ; Estrada, David ; Ong, Zhun-Yong ; He, Kevin T ; Pop, Eric ; Lyding, Joseph W</creator><creatorcontrib>Koepke, Justin C ; Wood, Joshua D ; Estrada, David ; Ong, Zhun-Yong ; He, Kevin T ; Pop, Eric ; Lyding, Joseph W</creatorcontrib><description>We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO2 substrates. We find no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and SiO2 topography. Scanning tunneling spectroscopy shows enhanced empty states tunneling conductance for most of the GBs and a shift toward more n-type behavior compared to the bulk of the graphene. We also observe standing wave patterns adjacent to GBs propagating in a zigzag direction with a decay length of ∼1 nm. Fourier analysis of these patterns indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn302064p</identifier><identifier>PMID: 23237026</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical vapor deposition ; Electron Transport ; Electronics ; Grain boundaries ; Graphene ; Graphite - chemistry ; Materials Testing ; Microscopy, Scanning Tunneling - methods ; Molecular Conformation ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Scanning tunneling microscopy ; Scattering ; Silicon dioxide ; Surface Properties ; Wave propagation</subject><ispartof>ACS nano, 2013-01, Vol.7 (1), p.75-86</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93</citedby><cites>FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23237026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koepke, Justin C</creatorcontrib><creatorcontrib>Wood, Joshua D</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><creatorcontrib>Ong, Zhun-Yong</creatorcontrib><creatorcontrib>He, Kevin T</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><creatorcontrib>Lyding, Joseph W</creatorcontrib><title>Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO2 substrates. We find no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and SiO2 topography. Scanning tunneling spectroscopy shows enhanced empty states tunneling conductance for most of the GBs and a shift toward more n-type behavior compared to the bulk of the graphene. We also observe standing wave patterns adjacent to GBs propagating in a zigzag direction with a decay length of ∼1 nm. Fourier analysis of these patterns indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene.</description><subject>Chemical vapor deposition</subject><subject>Electron Transport</subject><subject>Electronics</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Materials Testing</subject><subject>Microscopy, Scanning Tunneling - methods</subject><subject>Molecular Conformation</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Scanning tunneling microscopy</subject><subject>Scattering</subject><subject>Silicon dioxide</subject><subject>Surface Properties</subject><subject>Wave propagation</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtL9DAUhoN84n3hH5BsPtBFNZe2ad2NgzdQFFRwVzLpiUY6SU1SYf6Ev9mU0VkJrvJyePLAOS9C-5QcU8LoibWcMFLm_RraojUvM1KVz_9WuaCbaDuEN0IKUYlyA20yzrggrNxCn5Po5kZlD0p2gM8_TAtWAdbO43sXwUYjO3wmvTfgA5a2xQ_RO_uCp8sZTh9jBG_SSEZ86WX_ChbGYCw-c4NtZeLCKZ6MqLUj-DhYC92Ybo3yLijXL5J3aBe7aF3LLsDe97uDni7OH6dX2c3d5fV0cpPJnOYxq6CuNSkKzXKm01qk1CCKVgtNck35jBRciVnNVN3OqGaCs0pUVBKiGOWlrvkOOlx6e-_eBwixmZugoOukBTeEhoqSJS2n-d9o0ouEVzyhR0t0XCp40E3vzVz6RUNJMzbVrJpK7MG3dpjNoV2RP9Uk4P8SkCo0b27wNh3kF9EXt4madQ</recordid><startdate>20130122</startdate><enddate>20130122</enddate><creator>Koepke, Justin C</creator><creator>Wood, Joshua D</creator><creator>Estrada, David</creator><creator>Ong, Zhun-Yong</creator><creator>He, Kevin T</creator><creator>Pop, Eric</creator><creator>Lyding, Joseph W</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130122</creationdate><title>Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study</title><author>Koepke, Justin C ; Wood, Joshua D ; Estrada, David ; Ong, Zhun-Yong ; He, Kevin T ; Pop, Eric ; Lyding, Joseph W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical vapor deposition</topic><topic>Electron Transport</topic><topic>Electronics</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Materials Testing</topic><topic>Microscopy, Scanning Tunneling - methods</topic><topic>Molecular Conformation</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Scanning tunneling microscopy</topic><topic>Scattering</topic><topic>Silicon dioxide</topic><topic>Surface Properties</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koepke, Justin C</creatorcontrib><creatorcontrib>Wood, Joshua D</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><creatorcontrib>Ong, Zhun-Yong</creatorcontrib><creatorcontrib>He, Kevin T</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><creatorcontrib>Lyding, Joseph W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koepke, Justin C</au><au>Wood, Joshua D</au><au>Estrada, David</au><au>Ong, Zhun-Yong</au><au>He, Kevin T</au><au>Pop, Eric</au><au>Lyding, Joseph W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-01-22</date><risdate>2013</risdate><volume>7</volume><issue>1</issue><spage>75</spage><epage>86</epage><pages>75-86</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO2 substrates. We find no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and SiO2 topography. Scanning tunneling spectroscopy shows enhanced empty states tunneling conductance for most of the GBs and a shift toward more n-type behavior compared to the bulk of the graphene. We also observe standing wave patterns adjacent to GBs propagating in a zigzag direction with a decay length of ∼1 nm. Fourier analysis of these patterns indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23237026</pmid><doi>10.1021/nn302064p</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2013-01, Vol.7 (1), p.75-86 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762050314 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemical vapor deposition Electron Transport Electronics Grain boundaries Graphene Graphite - chemistry Materials Testing Microscopy, Scanning Tunneling - methods Molecular Conformation Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Particle Size Scanning tunneling microscopy Scattering Silicon dioxide Surface Properties Wave propagation |
title | Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-Scale%20Evidence%20for%20Potential%20Barriers%20and%20Strong%20Carrier%20Scattering%20at%20Graphene%20Grain%20Boundaries:%20A%20Scanning%20Tunneling%20Microscopy%20Study&rft.jtitle=ACS%20nano&rft.au=Koepke,%20Justin%20C&rft.date=2013-01-22&rft.volume=7&rft.issue=1&rft.spage=75&rft.epage=86&rft.pages=75-86&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn302064p&rft_dat=%3Cproquest_cross%3E1273776283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1273776283&rft_id=info:pmid/23237026&rfr_iscdi=true |