Loading…

Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study

We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO2 substrates. We find no preferential orientation angle between grains, and the GBs a...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2013-01, Vol.7 (1), p.75-86
Main Authors: Koepke, Justin C, Wood, Joshua D, Estrada, David, Ong, Zhun-Yong, He, Kevin T, Pop, Eric, Lyding, Joseph W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93
cites cdi_FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93
container_end_page 86
container_issue 1
container_start_page 75
container_title ACS nano
container_volume 7
creator Koepke, Justin C
Wood, Joshua D
Estrada, David
Ong, Zhun-Yong
He, Kevin T
Pop, Eric
Lyding, Joseph W
description We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO2 substrates. We find no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and SiO2 topography. Scanning tunneling spectroscopy shows enhanced empty states tunneling conductance for most of the GBs and a shift toward more n-type behavior compared to the bulk of the graphene. We also observe standing wave patterns adjacent to GBs propagating in a zigzag direction with a decay length of ∼1 nm. Fourier analysis of these patterns indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene.
doi_str_mv 10.1021/nn302064p
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762050314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273776283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93</originalsourceid><addsrcrecordid>eNqFkUtL9DAUhoN84n3hH5BsPtBFNZe2ad2NgzdQFFRwVzLpiUY6SU1SYf6Ev9mU0VkJrvJyePLAOS9C-5QcU8LoibWcMFLm_RraojUvM1KVz_9WuaCbaDuEN0IKUYlyA20yzrggrNxCn5Po5kZlD0p2gM8_TAtWAdbO43sXwUYjO3wmvTfgA5a2xQ_RO_uCp8sZTh9jBG_SSEZ86WX_ChbGYCw-c4NtZeLCKZ6MqLUj-DhYC92Ybo3yLijXL5J3aBe7aF3LLsDe97uDni7OH6dX2c3d5fV0cpPJnOYxq6CuNSkKzXKm01qk1CCKVgtNck35jBRciVnNVN3OqGaCs0pUVBKiGOWlrvkOOlx6e-_eBwixmZugoOukBTeEhoqSJS2n-d9o0ouEVzyhR0t0XCp40E3vzVz6RUNJMzbVrJpK7MG3dpjNoV2RP9Uk4P8SkCo0b27wNh3kF9EXt4madQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273776283</pqid></control><display><type>article</type><title>Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Koepke, Justin C ; Wood, Joshua D ; Estrada, David ; Ong, Zhun-Yong ; He, Kevin T ; Pop, Eric ; Lyding, Joseph W</creator><creatorcontrib>Koepke, Justin C ; Wood, Joshua D ; Estrada, David ; Ong, Zhun-Yong ; He, Kevin T ; Pop, Eric ; Lyding, Joseph W</creatorcontrib><description>We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO2 substrates. We find no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and SiO2 topography. Scanning tunneling spectroscopy shows enhanced empty states tunneling conductance for most of the GBs and a shift toward more n-type behavior compared to the bulk of the graphene. We also observe standing wave patterns adjacent to GBs propagating in a zigzag direction with a decay length of ∼1 nm. Fourier analysis of these patterns indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn302064p</identifier><identifier>PMID: 23237026</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical vapor deposition ; Electron Transport ; Electronics ; Grain boundaries ; Graphene ; Graphite - chemistry ; Materials Testing ; Microscopy, Scanning Tunneling - methods ; Molecular Conformation ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Scanning tunneling microscopy ; Scattering ; Silicon dioxide ; Surface Properties ; Wave propagation</subject><ispartof>ACS nano, 2013-01, Vol.7 (1), p.75-86</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93</citedby><cites>FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23237026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koepke, Justin C</creatorcontrib><creatorcontrib>Wood, Joshua D</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><creatorcontrib>Ong, Zhun-Yong</creatorcontrib><creatorcontrib>He, Kevin T</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><creatorcontrib>Lyding, Joseph W</creatorcontrib><title>Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO2 substrates. We find no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and SiO2 topography. Scanning tunneling spectroscopy shows enhanced empty states tunneling conductance for most of the GBs and a shift toward more n-type behavior compared to the bulk of the graphene. We also observe standing wave patterns adjacent to GBs propagating in a zigzag direction with a decay length of ∼1 nm. Fourier analysis of these patterns indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene.</description><subject>Chemical vapor deposition</subject><subject>Electron Transport</subject><subject>Electronics</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Materials Testing</subject><subject>Microscopy, Scanning Tunneling - methods</subject><subject>Molecular Conformation</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Scanning tunneling microscopy</subject><subject>Scattering</subject><subject>Silicon dioxide</subject><subject>Surface Properties</subject><subject>Wave propagation</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtL9DAUhoN84n3hH5BsPtBFNZe2ad2NgzdQFFRwVzLpiUY6SU1SYf6Ev9mU0VkJrvJyePLAOS9C-5QcU8LoibWcMFLm_RraojUvM1KVz_9WuaCbaDuEN0IKUYlyA20yzrggrNxCn5Po5kZlD0p2gM8_TAtWAdbO43sXwUYjO3wmvTfgA5a2xQ_RO_uCp8sZTh9jBG_SSEZ86WX_ChbGYCw-c4NtZeLCKZ6MqLUj-DhYC92Ybo3yLijXL5J3aBe7aF3LLsDe97uDni7OH6dX2c3d5fV0cpPJnOYxq6CuNSkKzXKm01qk1CCKVgtNck35jBRciVnNVN3OqGaCs0pUVBKiGOWlrvkOOlx6e-_eBwixmZugoOukBTeEhoqSJS2n-d9o0ouEVzyhR0t0XCp40E3vzVz6RUNJMzbVrJpK7MG3dpjNoV2RP9Uk4P8SkCo0b27wNh3kF9EXt4madQ</recordid><startdate>20130122</startdate><enddate>20130122</enddate><creator>Koepke, Justin C</creator><creator>Wood, Joshua D</creator><creator>Estrada, David</creator><creator>Ong, Zhun-Yong</creator><creator>He, Kevin T</creator><creator>Pop, Eric</creator><creator>Lyding, Joseph W</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130122</creationdate><title>Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study</title><author>Koepke, Justin C ; Wood, Joshua D ; Estrada, David ; Ong, Zhun-Yong ; He, Kevin T ; Pop, Eric ; Lyding, Joseph W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical vapor deposition</topic><topic>Electron Transport</topic><topic>Electronics</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Materials Testing</topic><topic>Microscopy, Scanning Tunneling - methods</topic><topic>Molecular Conformation</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Scanning tunneling microscopy</topic><topic>Scattering</topic><topic>Silicon dioxide</topic><topic>Surface Properties</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koepke, Justin C</creatorcontrib><creatorcontrib>Wood, Joshua D</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><creatorcontrib>Ong, Zhun-Yong</creatorcontrib><creatorcontrib>He, Kevin T</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><creatorcontrib>Lyding, Joseph W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koepke, Justin C</au><au>Wood, Joshua D</au><au>Estrada, David</au><au>Ong, Zhun-Yong</au><au>He, Kevin T</au><au>Pop, Eric</au><au>Lyding, Joseph W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-01-22</date><risdate>2013</risdate><volume>7</volume><issue>1</issue><spage>75</spage><epage>86</epage><pages>75-86</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO2 substrates. We find no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and SiO2 topography. Scanning tunneling spectroscopy shows enhanced empty states tunneling conductance for most of the GBs and a shift toward more n-type behavior compared to the bulk of the graphene. We also observe standing wave patterns adjacent to GBs propagating in a zigzag direction with a decay length of ∼1 nm. Fourier analysis of these patterns indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23237026</pmid><doi>10.1021/nn302064p</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2013-01, Vol.7 (1), p.75-86
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762050314
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemical vapor deposition
Electron Transport
Electronics
Grain boundaries
Graphene
Graphite - chemistry
Materials Testing
Microscopy, Scanning Tunneling - methods
Molecular Conformation
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Particle Size
Scanning tunneling microscopy
Scattering
Silicon dioxide
Surface Properties
Wave propagation
title Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-Scale%20Evidence%20for%20Potential%20Barriers%20and%20Strong%20Carrier%20Scattering%20at%20Graphene%20Grain%20Boundaries:%20A%20Scanning%20Tunneling%20Microscopy%20Study&rft.jtitle=ACS%20nano&rft.au=Koepke,%20Justin%20C&rft.date=2013-01-22&rft.volume=7&rft.issue=1&rft.spage=75&rft.epage=86&rft.pages=75-86&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn302064p&rft_dat=%3Cproquest_cross%3E1273776283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-8e99f055f242f00506fe75df7f04f13b053c7b92c9db1f27328781a00c2136f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1273776283&rft_id=info:pmid/23237026&rfr_iscdi=true