Loading…
Theory of Plasmon-Enhanced Metal Photoluminescence
Metal photoluminescence (MPL) originates from radiative recombination of photoexcited core holes and conduction band electrons. In metal nanostructures, MPL is enhanced due to the surface plasmon local field effect. We identify another essential process in plasmon-assisted MPLexcitation of Auger pl...
Saved in:
Published in: | Nano letters 2013-01, Vol.13 (1), p.194-198 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metal photoluminescence (MPL) originates from radiative recombination of photoexcited core holes and conduction band electrons. In metal nanostructures, MPL is enhanced due to the surface plasmon local field effect. We identify another essential process in plasmon-assisted MPLexcitation of Auger plasmons by core holesthat hinders MPL from small nanostructures. We develop a microscopic theory of plasmon-enhanced MPL that incorporates both plasmon-assisted enhancement and suppression mechanisms and derive the enhancement factor for MPL quantum efficiency. Our numerical calculations of MPL from Au nanoparticles are in excellent agreement with the experiment. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl303851z |