Loading…
Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy
Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which fo...
Saved in:
Published in: | ACS nano 2014-05, Vol.8 (5), p.5233-5239 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3 |
container_end_page | 5239 |
container_issue | 5 |
container_start_page | 5233 |
container_title | ACS nano |
container_volume | 8 |
creator | Wastl, Daniel S Weymouth, Alfred J Giessibl, Franz J |
description | Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip–sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments. |
doi_str_mv | 10.1021/nn501696q |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762051299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762051299</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoTqcH_wHJRdBDNUmTtD2O4TZhIvgDvJUkfcWM_lrSCv3v7ejcSfD03uF7H7wPoStK7ilh9KGqBKEykdsjdEaTUAYklp_Hh13QCTr3fkOIiOJInqIJ4xGXRLIztJq1dWmNKooev4Kvi2_I8NKp5su21uC3zuXKgMe2wjPrsO7xeIAXtTOAn61xtTd101-gk1wVHi73c4o-Fo_v81Wwflk-zWfrQHHK2wAyRrQRXEMOIQ2JMSrXUgpNRaYVkCzWEqJQUcUkh0wxnVPJMwVchsbEJpyi29HbuHrbgW_T0noDRaEqqDuf0kgyIihLkv9RwZKY0yShA3o3ort3vIM8bZwtletTStJd4_TQeGCv99pOl5AdyN-oA3AzAsr4dFN3rhqC_CH6Afhrg2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529841991</pqid></control><display><type>article</type><title>Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Wastl, Daniel S ; Weymouth, Alfred J ; Giessibl, Franz J</creator><creatorcontrib>Wastl, Daniel S ; Weymouth, Alfred J ; Giessibl, Franz J</creatorcontrib><description>Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip–sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn501696q</identifier><identifier>PMID: 24746062</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Air ; Aluminum Oxide - chemistry ; Atomic force microscopy ; Biocompatibility ; Biocompatible Materials - chemistry ; Crystallization ; Graphene ; Graphite ; Graphite - chemistry ; Hydrogen - chemistry ; Hydrophobic and Hydrophilic Interactions ; Imaging ; Lipid Bilayers - chemistry ; Materials Testing ; Microscopy, Atomic Force ; Nanostructure ; Nanotechnology - methods ; Silicon - chemistry ; Silicon carbide ; Spectra ; Spectrophotometry ; Surface Properties ; Water - chemistry</subject><ispartof>ACS nano, 2014-05, Vol.8 (5), p.5233-5239</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3</citedby><cites>FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24746062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wastl, Daniel S</creatorcontrib><creatorcontrib>Weymouth, Alfred J</creatorcontrib><creatorcontrib>Giessibl, Franz J</creatorcontrib><title>Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip–sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.</description><subject>Air</subject><subject>Aluminum Oxide - chemistry</subject><subject>Atomic force microscopy</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Crystallization</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Graphite - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Imaging</subject><subject>Lipid Bilayers - chemistry</subject><subject>Materials Testing</subject><subject>Microscopy, Atomic Force</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Silicon - chemistry</subject><subject>Silicon carbide</subject><subject>Spectra</subject><subject>Spectrophotometry</subject><subject>Surface Properties</subject><subject>Water - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMoTqcH_wHJRdBDNUmTtD2O4TZhIvgDvJUkfcWM_lrSCv3v7ejcSfD03uF7H7wPoStK7ilh9KGqBKEykdsjdEaTUAYklp_Hh13QCTr3fkOIiOJInqIJ4xGXRLIztJq1dWmNKooev4Kvi2_I8NKp5su21uC3zuXKgMe2wjPrsO7xeIAXtTOAn61xtTd101-gk1wVHi73c4o-Fo_v81Wwflk-zWfrQHHK2wAyRrQRXEMOIQ2JMSrXUgpNRaYVkCzWEqJQUcUkh0wxnVPJMwVchsbEJpyi29HbuHrbgW_T0noDRaEqqDuf0kgyIihLkv9RwZKY0yShA3o3ort3vIM8bZwtletTStJd4_TQeGCv99pOl5AdyN-oA3AzAsr4dFN3rhqC_CH6Afhrg2U</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Wastl, Daniel S</creator><creator>Weymouth, Alfred J</creator><creator>Giessibl, Franz J</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140527</creationdate><title>Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy</title><author>Wastl, Daniel S ; Weymouth, Alfred J ; Giessibl, Franz J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air</topic><topic>Aluminum Oxide - chemistry</topic><topic>Atomic force microscopy</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Crystallization</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Graphite - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Imaging</topic><topic>Lipid Bilayers - chemistry</topic><topic>Materials Testing</topic><topic>Microscopy, Atomic Force</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Silicon - chemistry</topic><topic>Silicon carbide</topic><topic>Spectra</topic><topic>Spectrophotometry</topic><topic>Surface Properties</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wastl, Daniel S</creatorcontrib><creatorcontrib>Weymouth, Alfred J</creatorcontrib><creatorcontrib>Giessibl, Franz J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wastl, Daniel S</au><au>Weymouth, Alfred J</au><au>Giessibl, Franz J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>8</volume><issue>5</issue><spage>5233</spage><epage>5239</epage><pages>5233-5239</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip–sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24746062</pmid><doi>10.1021/nn501696q</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2014-05, Vol.8 (5), p.5233-5239 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762051299 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Air Aluminum Oxide - chemistry Atomic force microscopy Biocompatibility Biocompatible Materials - chemistry Crystallization Graphene Graphite Graphite - chemistry Hydrogen - chemistry Hydrophobic and Hydrophilic Interactions Imaging Lipid Bilayers - chemistry Materials Testing Microscopy, Atomic Force Nanostructure Nanotechnology - methods Silicon - chemistry Silicon carbide Spectra Spectrophotometry Surface Properties Water - chemistry |
title | Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20Resolved%20Graphitic%20Surfaces%20in%20Air%20by%20Atomic%20Force%20Microscopy&rft.jtitle=ACS%20nano&rft.au=Wastl,%20Daniel%20S&rft.date=2014-05-27&rft.volume=8&rft.issue=5&rft.spage=5233&rft.epage=5239&rft.pages=5233-5239&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn501696q&rft_dat=%3Cproquest_cross%3E1762051299%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1529841991&rft_id=info:pmid/24746062&rfr_iscdi=true |