Loading…

Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy

Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which fo...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2014-05, Vol.8 (5), p.5233-5239
Main Authors: Wastl, Daniel S, Weymouth, Alfred J, Giessibl, Franz J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3
cites cdi_FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3
container_end_page 5239
container_issue 5
container_start_page 5233
container_title ACS nano
container_volume 8
creator Wastl, Daniel S
Weymouth, Alfred J
Giessibl, Franz J
description Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip–sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.
doi_str_mv 10.1021/nn501696q
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762051299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762051299</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoTqcH_wHJRdBDNUmTtD2O4TZhIvgDvJUkfcWM_lrSCv3v7ejcSfD03uF7H7wPoStK7ilh9KGqBKEykdsjdEaTUAYklp_Hh13QCTr3fkOIiOJInqIJ4xGXRLIztJq1dWmNKooev4Kvi2_I8NKp5su21uC3zuXKgMe2wjPrsO7xeIAXtTOAn61xtTd101-gk1wVHi73c4o-Fo_v81Wwflk-zWfrQHHK2wAyRrQRXEMOIQ2JMSrXUgpNRaYVkCzWEqJQUcUkh0wxnVPJMwVchsbEJpyi29HbuHrbgW_T0noDRaEqqDuf0kgyIihLkv9RwZKY0yShA3o3ort3vIM8bZwtletTStJd4_TQeGCv99pOl5AdyN-oA3AzAsr4dFN3rhqC_CH6Afhrg2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529841991</pqid></control><display><type>article</type><title>Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wastl, Daniel S ; Weymouth, Alfred J ; Giessibl, Franz J</creator><creatorcontrib>Wastl, Daniel S ; Weymouth, Alfred J ; Giessibl, Franz J</creatorcontrib><description>Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip–sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn501696q</identifier><identifier>PMID: 24746062</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Air ; Aluminum Oxide - chemistry ; Atomic force microscopy ; Biocompatibility ; Biocompatible Materials - chemistry ; Crystallization ; Graphene ; Graphite ; Graphite - chemistry ; Hydrogen - chemistry ; Hydrophobic and Hydrophilic Interactions ; Imaging ; Lipid Bilayers - chemistry ; Materials Testing ; Microscopy, Atomic Force ; Nanostructure ; Nanotechnology - methods ; Silicon - chemistry ; Silicon carbide ; Spectra ; Spectrophotometry ; Surface Properties ; Water - chemistry</subject><ispartof>ACS nano, 2014-05, Vol.8 (5), p.5233-5239</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3</citedby><cites>FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24746062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wastl, Daniel S</creatorcontrib><creatorcontrib>Weymouth, Alfred J</creatorcontrib><creatorcontrib>Giessibl, Franz J</creatorcontrib><title>Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip–sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.</description><subject>Air</subject><subject>Aluminum Oxide - chemistry</subject><subject>Atomic force microscopy</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Crystallization</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Graphite - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Imaging</subject><subject>Lipid Bilayers - chemistry</subject><subject>Materials Testing</subject><subject>Microscopy, Atomic Force</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Silicon - chemistry</subject><subject>Silicon carbide</subject><subject>Spectra</subject><subject>Spectrophotometry</subject><subject>Surface Properties</subject><subject>Water - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMoTqcH_wHJRdBDNUmTtD2O4TZhIvgDvJUkfcWM_lrSCv3v7ejcSfD03uF7H7wPoStK7ilh9KGqBKEykdsjdEaTUAYklp_Hh13QCTr3fkOIiOJInqIJ4xGXRLIztJq1dWmNKooev4Kvi2_I8NKp5su21uC3zuXKgMe2wjPrsO7xeIAXtTOAn61xtTd101-gk1wVHi73c4o-Fo_v81Wwflk-zWfrQHHK2wAyRrQRXEMOIQ2JMSrXUgpNRaYVkCzWEqJQUcUkh0wxnVPJMwVchsbEJpyi29HbuHrbgW_T0noDRaEqqDuf0kgyIihLkv9RwZKY0yShA3o3ort3vIM8bZwtletTStJd4_TQeGCv99pOl5AdyN-oA3AzAsr4dFN3rhqC_CH6Afhrg2U</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Wastl, Daniel S</creator><creator>Weymouth, Alfred J</creator><creator>Giessibl, Franz J</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140527</creationdate><title>Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy</title><author>Wastl, Daniel S ; Weymouth, Alfred J ; Giessibl, Franz J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air</topic><topic>Aluminum Oxide - chemistry</topic><topic>Atomic force microscopy</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Crystallization</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Graphite - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Imaging</topic><topic>Lipid Bilayers - chemistry</topic><topic>Materials Testing</topic><topic>Microscopy, Atomic Force</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Silicon - chemistry</topic><topic>Silicon carbide</topic><topic>Spectra</topic><topic>Spectrophotometry</topic><topic>Surface Properties</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wastl, Daniel S</creatorcontrib><creatorcontrib>Weymouth, Alfred J</creatorcontrib><creatorcontrib>Giessibl, Franz J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wastl, Daniel S</au><au>Weymouth, Alfred J</au><au>Giessibl, Franz J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>8</volume><issue>5</issue><spage>5233</spage><epage>5239</epage><pages>5233-5239</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip–sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24746062</pmid><doi>10.1021/nn501696q</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2014-05, Vol.8 (5), p.5233-5239
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762051299
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Air
Aluminum Oxide - chemistry
Atomic force microscopy
Biocompatibility
Biocompatible Materials - chemistry
Crystallization
Graphene
Graphite
Graphite - chemistry
Hydrogen - chemistry
Hydrophobic and Hydrophilic Interactions
Imaging
Lipid Bilayers - chemistry
Materials Testing
Microscopy, Atomic Force
Nanostructure
Nanotechnology - methods
Silicon - chemistry
Silicon carbide
Spectra
Spectrophotometry
Surface Properties
Water - chemistry
title Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20Resolved%20Graphitic%20Surfaces%20in%20Air%20by%20Atomic%20Force%20Microscopy&rft.jtitle=ACS%20nano&rft.au=Wastl,%20Daniel%20S&rft.date=2014-05-27&rft.volume=8&rft.issue=5&rft.spage=5233&rft.epage=5239&rft.pages=5233-5239&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn501696q&rft_dat=%3Cproquest_cross%3E1762051299%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-ed20bc54befe3130ccafb665b15dbae0d8b6e73a1a264eda2bf164dae463cc8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1529841991&rft_id=info:pmid/24746062&rfr_iscdi=true