Loading…

Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores

Electric double layer capacitors (or supercapacitors) store charges through the physisorption of electrolyte ions onto porous carbon electrodes. The control over structure and morphology of carbon electrode materials is therefore an effective strategy to render them high surface area and efficient p...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2013-08, Vol.7 (8), p.6899-6905
Main Authors: Kim, TaeYoung, Jung, Gyujin, Yoo, Seonmi, Suh, Kwang S, Ruoff, Rodney S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243
cites cdi_FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243
container_end_page 6905
container_issue 8
container_start_page 6899
container_title ACS nano
container_volume 7
creator Kim, TaeYoung
Jung, Gyujin
Yoo, Seonmi
Suh, Kwang S
Ruoff, Rodney S
description Electric double layer capacitors (or supercapacitors) store charges through the physisorption of electrolyte ions onto porous carbon electrodes. The control over structure and morphology of carbon electrode materials is therefore an effective strategy to render them high surface area and efficient paths for ion diffusion. Here we demonstrate the fabrication of highly porous graphene-derived carbons with hierarchical pore structures in which mesopores are integrated into macroporous scaffolds. The macropores were introduced by assembling graphene-based hollow spheres, and the mesopores were derived from the chemical activation with potassium hydroxide. The unique three-dimensional pore structures in the produced graphene-derived carbons give rise to a Brunauer–Emmett–Teller surface area value of up to 3290 m2 g–1 and provide an efficient pathway for electrolyte ions to diffuse into the interior surfaces of bulk electrode particles. These carbons exhibit both high gravimetric (174 F g–1) and volumetric (∼100 F cm–3) specific capacitance in an ionic liquid electrolyte in acetonitrile. The energy density and power density of the cell assembled with this carbon electrode are also high, with gravimetric values of 74 Wh kg–1 and 338 kW kg–1 and volumetric values of 44 Wh L–1 and 199 kW L–1, respectively. The supercapacitor performance achieved with these graphene-derived carbons is attributed to their unique pore structure and makes them potentially promising for diverse energy storage devices.
doi_str_mv 10.1021/nn402077v
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762052640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762052640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK0e_AOSi6CH6H5ld3OspVahxYOK3sJkd0NT0mzcTSr-eyOtPQkyh5mBh3eYB6Fzgm8IpuS2rjmmWMrNARqSlIkYK_F-uJ8TMkAnIawwTqSS4hgNKFM0TUQ6RG9j3ZYbaK2JZh6apa1tfAehXyfgc1eHCEL03DXWa2hAl63z0bSyuvXO2BB9lu0yWoD2Lo6gNtHCBtc4b8MpOiqgCvZs10fo9X76MnmI50-zx8l4HgPjqo0Zw4TTNGVcgjGcKkwSbiE1UmmlAAuWCyUVLxjhaaGVIKzoiwMzORSUsxG62uY23n10NrTZugzaVhXU1nUhI1JQnFDB8f9ofz4hginSo9dbtH8sBG-LrPHlGvxXRnD2ozzbK-_Zi11sl6-t2ZO_jnvgcguADtnKdb7uhfwR9A27dYZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428516381</pqid></control><display><type>article</type><title>Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kim, TaeYoung ; Jung, Gyujin ; Yoo, Seonmi ; Suh, Kwang S ; Ruoff, Rodney S</creator><creatorcontrib>Kim, TaeYoung ; Jung, Gyujin ; Yoo, Seonmi ; Suh, Kwang S ; Ruoff, Rodney S</creatorcontrib><description>Electric double layer capacitors (or supercapacitors) store charges through the physisorption of electrolyte ions onto porous carbon electrodes. The control over structure and morphology of carbon electrode materials is therefore an effective strategy to render them high surface area and efficient paths for ion diffusion. Here we demonstrate the fabrication of highly porous graphene-derived carbons with hierarchical pore structures in which mesopores are integrated into macroporous scaffolds. The macropores were introduced by assembling graphene-based hollow spheres, and the mesopores were derived from the chemical activation with potassium hydroxide. The unique three-dimensional pore structures in the produced graphene-derived carbons give rise to a Brunauer–Emmett–Teller surface area value of up to 3290 m2 g–1 and provide an efficient pathway for electrolyte ions to diffuse into the interior surfaces of bulk electrode particles. These carbons exhibit both high gravimetric (174 F g–1) and volumetric (∼100 F cm–3) specific capacitance in an ionic liquid electrolyte in acetonitrile. The energy density and power density of the cell assembled with this carbon electrode are also high, with gravimetric values of 74 Wh kg–1 and 338 kW kg–1 and volumetric values of 44 Wh L–1 and 199 kW L–1, respectively. The supercapacitor performance achieved with these graphene-derived carbons is attributed to their unique pore structure and makes them potentially promising for diverse energy storage devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn402077v</identifier><identifier>PMID: 23829569</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Capacitors ; Carbon ; Density ; Electrodes ; Electrolytes ; Gravimeters ; Porosity ; Supercapacitors ; Surface area</subject><ispartof>ACS nano, 2013-08, Vol.7 (8), p.6899-6905</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243</citedby><cites>FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23829569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, TaeYoung</creatorcontrib><creatorcontrib>Jung, Gyujin</creatorcontrib><creatorcontrib>Yoo, Seonmi</creatorcontrib><creatorcontrib>Suh, Kwang S</creatorcontrib><creatorcontrib>Ruoff, Rodney S</creatorcontrib><title>Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Electric double layer capacitors (or supercapacitors) store charges through the physisorption of electrolyte ions onto porous carbon electrodes. The control over structure and morphology of carbon electrode materials is therefore an effective strategy to render them high surface area and efficient paths for ion diffusion. Here we demonstrate the fabrication of highly porous graphene-derived carbons with hierarchical pore structures in which mesopores are integrated into macroporous scaffolds. The macropores were introduced by assembling graphene-based hollow spheres, and the mesopores were derived from the chemical activation with potassium hydroxide. The unique three-dimensional pore structures in the produced graphene-derived carbons give rise to a Brunauer–Emmett–Teller surface area value of up to 3290 m2 g–1 and provide an efficient pathway for electrolyte ions to diffuse into the interior surfaces of bulk electrode particles. These carbons exhibit both high gravimetric (174 F g–1) and volumetric (∼100 F cm–3) specific capacitance in an ionic liquid electrolyte in acetonitrile. The energy density and power density of the cell assembled with this carbon electrode are also high, with gravimetric values of 74 Wh kg–1 and 338 kW kg–1 and volumetric values of 44 Wh L–1 and 199 kW L–1, respectively. The supercapacitor performance achieved with these graphene-derived carbons is attributed to their unique pore structure and makes them potentially promising for diverse energy storage devices.</description><subject>Capacitors</subject><subject>Carbon</subject><subject>Density</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Gravimeters</subject><subject>Porosity</subject><subject>Supercapacitors</subject><subject>Surface area</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRbK0e_AOSi6CH6H5ld3OspVahxYOK3sJkd0NT0mzcTSr-eyOtPQkyh5mBh3eYB6Fzgm8IpuS2rjmmWMrNARqSlIkYK_F-uJ8TMkAnIawwTqSS4hgNKFM0TUQ6RG9j3ZYbaK2JZh6apa1tfAehXyfgc1eHCEL03DXWa2hAl63z0bSyuvXO2BB9lu0yWoD2Lo6gNtHCBtc4b8MpOiqgCvZs10fo9X76MnmI50-zx8l4HgPjqo0Zw4TTNGVcgjGcKkwSbiE1UmmlAAuWCyUVLxjhaaGVIKzoiwMzORSUsxG62uY23n10NrTZugzaVhXU1nUhI1JQnFDB8f9ofz4hginSo9dbtH8sBG-LrPHlGvxXRnD2ozzbK-_Zi11sl6-t2ZO_jnvgcguADtnKdb7uhfwR9A27dYZw</recordid><startdate>20130827</startdate><enddate>20130827</enddate><creator>Kim, TaeYoung</creator><creator>Jung, Gyujin</creator><creator>Yoo, Seonmi</creator><creator>Suh, Kwang S</creator><creator>Ruoff, Rodney S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130827</creationdate><title>Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores</title><author>Kim, TaeYoung ; Jung, Gyujin ; Yoo, Seonmi ; Suh, Kwang S ; Ruoff, Rodney S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Capacitors</topic><topic>Carbon</topic><topic>Density</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Gravimeters</topic><topic>Porosity</topic><topic>Supercapacitors</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, TaeYoung</creatorcontrib><creatorcontrib>Jung, Gyujin</creatorcontrib><creatorcontrib>Yoo, Seonmi</creatorcontrib><creatorcontrib>Suh, Kwang S</creatorcontrib><creatorcontrib>Ruoff, Rodney S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, TaeYoung</au><au>Jung, Gyujin</au><au>Yoo, Seonmi</au><au>Suh, Kwang S</au><au>Ruoff, Rodney S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-08-27</date><risdate>2013</risdate><volume>7</volume><issue>8</issue><spage>6899</spage><epage>6905</epage><pages>6899-6905</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Electric double layer capacitors (or supercapacitors) store charges through the physisorption of electrolyte ions onto porous carbon electrodes. The control over structure and morphology of carbon electrode materials is therefore an effective strategy to render them high surface area and efficient paths for ion diffusion. Here we demonstrate the fabrication of highly porous graphene-derived carbons with hierarchical pore structures in which mesopores are integrated into macroporous scaffolds. The macropores were introduced by assembling graphene-based hollow spheres, and the mesopores were derived from the chemical activation with potassium hydroxide. The unique three-dimensional pore structures in the produced graphene-derived carbons give rise to a Brunauer–Emmett–Teller surface area value of up to 3290 m2 g–1 and provide an efficient pathway for electrolyte ions to diffuse into the interior surfaces of bulk electrode particles. These carbons exhibit both high gravimetric (174 F g–1) and volumetric (∼100 F cm–3) specific capacitance in an ionic liquid electrolyte in acetonitrile. The energy density and power density of the cell assembled with this carbon electrode are also high, with gravimetric values of 74 Wh kg–1 and 338 kW kg–1 and volumetric values of 44 Wh L–1 and 199 kW L–1, respectively. The supercapacitor performance achieved with these graphene-derived carbons is attributed to their unique pore structure and makes them potentially promising for diverse energy storage devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23829569</pmid><doi>10.1021/nn402077v</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2013-08, Vol.7 (8), p.6899-6905
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762052640
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Capacitors
Carbon
Density
Electrodes
Electrolytes
Gravimeters
Porosity
Supercapacitors
Surface area
title Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activated%20Graphene-Based%20Carbons%20as%20Supercapacitor%20Electrodes%20with%20Macro-%20and%20Mesopores&rft.jtitle=ACS%20nano&rft.au=Kim,%20TaeYoung&rft.date=2013-08-27&rft.volume=7&rft.issue=8&rft.spage=6899&rft.epage=6905&rft.pages=6899-6905&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn402077v&rft_dat=%3Cproquest_cross%3E1762052640%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428516381&rft_id=info:pmid/23829569&rfr_iscdi=true