Loading…
Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores
Electric double layer capacitors (or supercapacitors) store charges through the physisorption of electrolyte ions onto porous carbon electrodes. The control over structure and morphology of carbon electrode materials is therefore an effective strategy to render them high surface area and efficient p...
Saved in:
Published in: | ACS nano 2013-08, Vol.7 (8), p.6899-6905 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243 |
container_end_page | 6905 |
container_issue | 8 |
container_start_page | 6899 |
container_title | ACS nano |
container_volume | 7 |
creator | Kim, TaeYoung Jung, Gyujin Yoo, Seonmi Suh, Kwang S Ruoff, Rodney S |
description | Electric double layer capacitors (or supercapacitors) store charges through the physisorption of electrolyte ions onto porous carbon electrodes. The control over structure and morphology of carbon electrode materials is therefore an effective strategy to render them high surface area and efficient paths for ion diffusion. Here we demonstrate the fabrication of highly porous graphene-derived carbons with hierarchical pore structures in which mesopores are integrated into macroporous scaffolds. The macropores were introduced by assembling graphene-based hollow spheres, and the mesopores were derived from the chemical activation with potassium hydroxide. The unique three-dimensional pore structures in the produced graphene-derived carbons give rise to a Brunauer–Emmett–Teller surface area value of up to 3290 m2 g–1 and provide an efficient pathway for electrolyte ions to diffuse into the interior surfaces of bulk electrode particles. These carbons exhibit both high gravimetric (174 F g–1) and volumetric (∼100 F cm–3) specific capacitance in an ionic liquid electrolyte in acetonitrile. The energy density and power density of the cell assembled with this carbon electrode are also high, with gravimetric values of 74 Wh kg–1 and 338 kW kg–1 and volumetric values of 44 Wh L–1 and 199 kW L–1, respectively. The supercapacitor performance achieved with these graphene-derived carbons is attributed to their unique pore structure and makes them potentially promising for diverse energy storage devices. |
doi_str_mv | 10.1021/nn402077v |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762052640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762052640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK0e_AOSi6CH6H5ld3OspVahxYOK3sJkd0NT0mzcTSr-eyOtPQkyh5mBh3eYB6Fzgm8IpuS2rjmmWMrNARqSlIkYK_F-uJ8TMkAnIawwTqSS4hgNKFM0TUQ6RG9j3ZYbaK2JZh6apa1tfAehXyfgc1eHCEL03DXWa2hAl63z0bSyuvXO2BB9lu0yWoD2Lo6gNtHCBtc4b8MpOiqgCvZs10fo9X76MnmI50-zx8l4HgPjqo0Zw4TTNGVcgjGcKkwSbiE1UmmlAAuWCyUVLxjhaaGVIKzoiwMzORSUsxG62uY23n10NrTZugzaVhXU1nUhI1JQnFDB8f9ofz4hginSo9dbtH8sBG-LrPHlGvxXRnD2ozzbK-_Zi11sl6-t2ZO_jnvgcguADtnKdb7uhfwR9A27dYZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428516381</pqid></control><display><type>article</type><title>Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kim, TaeYoung ; Jung, Gyujin ; Yoo, Seonmi ; Suh, Kwang S ; Ruoff, Rodney S</creator><creatorcontrib>Kim, TaeYoung ; Jung, Gyujin ; Yoo, Seonmi ; Suh, Kwang S ; Ruoff, Rodney S</creatorcontrib><description>Electric double layer capacitors (or supercapacitors) store charges through the physisorption of electrolyte ions onto porous carbon electrodes. The control over structure and morphology of carbon electrode materials is therefore an effective strategy to render them high surface area and efficient paths for ion diffusion. Here we demonstrate the fabrication of highly porous graphene-derived carbons with hierarchical pore structures in which mesopores are integrated into macroporous scaffolds. The macropores were introduced by assembling graphene-based hollow spheres, and the mesopores were derived from the chemical activation with potassium hydroxide. The unique three-dimensional pore structures in the produced graphene-derived carbons give rise to a Brunauer–Emmett–Teller surface area value of up to 3290 m2 g–1 and provide an efficient pathway for electrolyte ions to diffuse into the interior surfaces of bulk electrode particles. These carbons exhibit both high gravimetric (174 F g–1) and volumetric (∼100 F cm–3) specific capacitance in an ionic liquid electrolyte in acetonitrile. The energy density and power density of the cell assembled with this carbon electrode are also high, with gravimetric values of 74 Wh kg–1 and 338 kW kg–1 and volumetric values of 44 Wh L–1 and 199 kW L–1, respectively. The supercapacitor performance achieved with these graphene-derived carbons is attributed to their unique pore structure and makes them potentially promising for diverse energy storage devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn402077v</identifier><identifier>PMID: 23829569</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Capacitors ; Carbon ; Density ; Electrodes ; Electrolytes ; Gravimeters ; Porosity ; Supercapacitors ; Surface area</subject><ispartof>ACS nano, 2013-08, Vol.7 (8), p.6899-6905</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243</citedby><cites>FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23829569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, TaeYoung</creatorcontrib><creatorcontrib>Jung, Gyujin</creatorcontrib><creatorcontrib>Yoo, Seonmi</creatorcontrib><creatorcontrib>Suh, Kwang S</creatorcontrib><creatorcontrib>Ruoff, Rodney S</creatorcontrib><title>Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Electric double layer capacitors (or supercapacitors) store charges through the physisorption of electrolyte ions onto porous carbon electrodes. The control over structure and morphology of carbon electrode materials is therefore an effective strategy to render them high surface area and efficient paths for ion diffusion. Here we demonstrate the fabrication of highly porous graphene-derived carbons with hierarchical pore structures in which mesopores are integrated into macroporous scaffolds. The macropores were introduced by assembling graphene-based hollow spheres, and the mesopores were derived from the chemical activation with potassium hydroxide. The unique three-dimensional pore structures in the produced graphene-derived carbons give rise to a Brunauer–Emmett–Teller surface area value of up to 3290 m2 g–1 and provide an efficient pathway for electrolyte ions to diffuse into the interior surfaces of bulk electrode particles. These carbons exhibit both high gravimetric (174 F g–1) and volumetric (∼100 F cm–3) specific capacitance in an ionic liquid electrolyte in acetonitrile. The energy density and power density of the cell assembled with this carbon electrode are also high, with gravimetric values of 74 Wh kg–1 and 338 kW kg–1 and volumetric values of 44 Wh L–1 and 199 kW L–1, respectively. The supercapacitor performance achieved with these graphene-derived carbons is attributed to their unique pore structure and makes them potentially promising for diverse energy storage devices.</description><subject>Capacitors</subject><subject>Carbon</subject><subject>Density</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Gravimeters</subject><subject>Porosity</subject><subject>Supercapacitors</subject><subject>Surface area</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRbK0e_AOSi6CH6H5ld3OspVahxYOK3sJkd0NT0mzcTSr-eyOtPQkyh5mBh3eYB6Fzgm8IpuS2rjmmWMrNARqSlIkYK_F-uJ8TMkAnIawwTqSS4hgNKFM0TUQ6RG9j3ZYbaK2JZh6apa1tfAehXyfgc1eHCEL03DXWa2hAl63z0bSyuvXO2BB9lu0yWoD2Lo6gNtHCBtc4b8MpOiqgCvZs10fo9X76MnmI50-zx8l4HgPjqo0Zw4TTNGVcgjGcKkwSbiE1UmmlAAuWCyUVLxjhaaGVIKzoiwMzORSUsxG62uY23n10NrTZugzaVhXU1nUhI1JQnFDB8f9ofz4hginSo9dbtH8sBG-LrPHlGvxXRnD2ozzbK-_Zi11sl6-t2ZO_jnvgcguADtnKdb7uhfwR9A27dYZw</recordid><startdate>20130827</startdate><enddate>20130827</enddate><creator>Kim, TaeYoung</creator><creator>Jung, Gyujin</creator><creator>Yoo, Seonmi</creator><creator>Suh, Kwang S</creator><creator>Ruoff, Rodney S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130827</creationdate><title>Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores</title><author>Kim, TaeYoung ; Jung, Gyujin ; Yoo, Seonmi ; Suh, Kwang S ; Ruoff, Rodney S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Capacitors</topic><topic>Carbon</topic><topic>Density</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Gravimeters</topic><topic>Porosity</topic><topic>Supercapacitors</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, TaeYoung</creatorcontrib><creatorcontrib>Jung, Gyujin</creatorcontrib><creatorcontrib>Yoo, Seonmi</creatorcontrib><creatorcontrib>Suh, Kwang S</creatorcontrib><creatorcontrib>Ruoff, Rodney S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, TaeYoung</au><au>Jung, Gyujin</au><au>Yoo, Seonmi</au><au>Suh, Kwang S</au><au>Ruoff, Rodney S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-08-27</date><risdate>2013</risdate><volume>7</volume><issue>8</issue><spage>6899</spage><epage>6905</epage><pages>6899-6905</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Electric double layer capacitors (or supercapacitors) store charges through the physisorption of electrolyte ions onto porous carbon electrodes. The control over structure and morphology of carbon electrode materials is therefore an effective strategy to render them high surface area and efficient paths for ion diffusion. Here we demonstrate the fabrication of highly porous graphene-derived carbons with hierarchical pore structures in which mesopores are integrated into macroporous scaffolds. The macropores were introduced by assembling graphene-based hollow spheres, and the mesopores were derived from the chemical activation with potassium hydroxide. The unique three-dimensional pore structures in the produced graphene-derived carbons give rise to a Brunauer–Emmett–Teller surface area value of up to 3290 m2 g–1 and provide an efficient pathway for electrolyte ions to diffuse into the interior surfaces of bulk electrode particles. These carbons exhibit both high gravimetric (174 F g–1) and volumetric (∼100 F cm–3) specific capacitance in an ionic liquid electrolyte in acetonitrile. The energy density and power density of the cell assembled with this carbon electrode are also high, with gravimetric values of 74 Wh kg–1 and 338 kW kg–1 and volumetric values of 44 Wh L–1 and 199 kW L–1, respectively. The supercapacitor performance achieved with these graphene-derived carbons is attributed to their unique pore structure and makes them potentially promising for diverse energy storage devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23829569</pmid><doi>10.1021/nn402077v</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2013-08, Vol.7 (8), p.6899-6905 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762052640 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Capacitors Carbon Density Electrodes Electrolytes Gravimeters Porosity Supercapacitors Surface area |
title | Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activated%20Graphene-Based%20Carbons%20as%20Supercapacitor%20Electrodes%20with%20Macro-%20and%20Mesopores&rft.jtitle=ACS%20nano&rft.au=Kim,%20TaeYoung&rft.date=2013-08-27&rft.volume=7&rft.issue=8&rft.spage=6899&rft.epage=6905&rft.pages=6899-6905&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn402077v&rft_dat=%3Cproquest_cross%3E1762052640%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-33014299347add4280154ea9d78c88a063b68784f3149fc8613f3f34a3dbaf243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428516381&rft_id=info:pmid/23829569&rfr_iscdi=true |