Loading…
Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells
Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigate...
Saved in:
Published in: | ACS nano 2013-08, Vol.7 (8), p.6605-6618 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473 |
container_end_page | 6618 |
container_issue | 8 |
container_start_page | 6605 |
container_title | ACS nano |
container_volume | 7 |
creator | Kastl, Lena Sasse, Daniel Wulf, Verena Hartmann, Raimo Mircheski, Josif Ranke, Christiane Carregal-Romero, Susana Martínez-López, José Antonio Fernández-Chacón, Rafael Parak, Wolfgang J Elsasser, Hans-Peter Rivera_Gil, Pilar |
description | Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes. |
doi_str_mv | 10.1021/nn306032k |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762053769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1428516439</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473</originalsourceid><addsrcrecordid>eNqFkEtLw0AQgBdRbH0c_AOyF0EP0X1kd9OjBB-FFntQ8CJh3E4wdZPU7AaJv97U1p4ETzOHbz6Gj5ATzi45E_yqqiTTTIr3HTLkI6kjlujn3e2u-IAceL9gTJnE6H0yEDIR2mgzJC_T1oVi6ZCOq4BNBa74glDUFZ1BePuEztM6p7PadejQhqZfAtKfIwcdNjSFpW8delpUoaZTKMteARVN0Tl_RPZycB6PN_OQPN3ePKb30eThbpxeTyKQcRIiUIrzeW6UEWBii3PDtQSQaIFrY43JAUErgSxmpoctWAFWjYRIEFhs5CE5X3uXTf3Rog9ZWXjbfwAV1q3PuNGCKWn06H80Fn0wHcsVerFGbVN732CeLZuihKbLOMtW4bNt-J493Wjb1xLnW_K3dA-crQGwPlvU7Sq1_0P0DZzMixw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428516439</pqid></control><display><type>article</type><title>Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kastl, Lena ; Sasse, Daniel ; Wulf, Verena ; Hartmann, Raimo ; Mircheski, Josif ; Ranke, Christiane ; Carregal-Romero, Susana ; Martínez-López, José Antonio ; Fernández-Chacón, Rafael ; Parak, Wolfgang J ; Elsasser, Hans-Peter ; Rivera_Gil, Pilar</creator><creatorcontrib>Kastl, Lena ; Sasse, Daniel ; Wulf, Verena ; Hartmann, Raimo ; Mircheski, Josif ; Ranke, Christiane ; Carregal-Romero, Susana ; Martínez-López, José Antonio ; Fernández-Chacón, Rafael ; Parak, Wolfgang J ; Elsasser, Hans-Peter ; Rivera_Gil, Pilar</creatorcontrib><description>Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn306032k</identifier><identifier>PMID: 23826767</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Animals ; Biocompatible Materials - chemistry ; Capsules - chemistry ; Caveolae - chemistry ; Cell Line, Tumor ; Clathrin - chemistry ; Cytoplasm - metabolism ; Drug Delivery Systems ; Electrolytes - chemistry ; Electrostatics ; Endocytosis ; Formations ; Humans ; Lipids ; Membrane Microdomains - chemistry ; Mice ; Microscopy, Confocal ; Microscopy, Electron ; Mitochondria - metabolism ; Multilayers ; Nanotechnology - methods ; Pathways ; Phagocytosis ; Phagosomes - chemistry ; Polyelectrolytes ; Rafts ; Static Electricity ; Uptakes ; Vesicles</subject><ispartof>ACS nano, 2013-08, Vol.7 (8), p.6605-6618</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473</citedby><cites>FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23826767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kastl, Lena</creatorcontrib><creatorcontrib>Sasse, Daniel</creatorcontrib><creatorcontrib>Wulf, Verena</creatorcontrib><creatorcontrib>Hartmann, Raimo</creatorcontrib><creatorcontrib>Mircheski, Josif</creatorcontrib><creatorcontrib>Ranke, Christiane</creatorcontrib><creatorcontrib>Carregal-Romero, Susana</creatorcontrib><creatorcontrib>Martínez-López, José Antonio</creatorcontrib><creatorcontrib>Fernández-Chacón, Rafael</creatorcontrib><creatorcontrib>Parak, Wolfgang J</creatorcontrib><creatorcontrib>Elsasser, Hans-Peter</creatorcontrib><creatorcontrib>Rivera_Gil, Pilar</creatorcontrib><title>Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes.</description><subject>Adsorption</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Capsules - chemistry</subject><subject>Caveolae - chemistry</subject><subject>Cell Line, Tumor</subject><subject>Clathrin - chemistry</subject><subject>Cytoplasm - metabolism</subject><subject>Drug Delivery Systems</subject><subject>Electrolytes - chemistry</subject><subject>Electrostatics</subject><subject>Endocytosis</subject><subject>Formations</subject><subject>Humans</subject><subject>Lipids</subject><subject>Membrane Microdomains - chemistry</subject><subject>Mice</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron</subject><subject>Mitochondria - metabolism</subject><subject>Multilayers</subject><subject>Nanotechnology - methods</subject><subject>Pathways</subject><subject>Phagocytosis</subject><subject>Phagosomes - chemistry</subject><subject>Polyelectrolytes</subject><subject>Rafts</subject><subject>Static Electricity</subject><subject>Uptakes</subject><subject>Vesicles</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AQgBdRbH0c_AOyF0EP0X1kd9OjBB-FFntQ8CJh3E4wdZPU7AaJv97U1p4ETzOHbz6Gj5ATzi45E_yqqiTTTIr3HTLkI6kjlujn3e2u-IAceL9gTJnE6H0yEDIR2mgzJC_T1oVi6ZCOq4BNBa74glDUFZ1BePuEztM6p7PadejQhqZfAtKfIwcdNjSFpW8delpUoaZTKMteARVN0Tl_RPZycB6PN_OQPN3ePKb30eThbpxeTyKQcRIiUIrzeW6UEWBii3PDtQSQaIFrY43JAUErgSxmpoctWAFWjYRIEFhs5CE5X3uXTf3Rog9ZWXjbfwAV1q3PuNGCKWn06H80Fn0wHcsVerFGbVN732CeLZuihKbLOMtW4bNt-J493Wjb1xLnW_K3dA-crQGwPlvU7Sq1_0P0DZzMixw</recordid><startdate>20130827</startdate><enddate>20130827</enddate><creator>Kastl, Lena</creator><creator>Sasse, Daniel</creator><creator>Wulf, Verena</creator><creator>Hartmann, Raimo</creator><creator>Mircheski, Josif</creator><creator>Ranke, Christiane</creator><creator>Carregal-Romero, Susana</creator><creator>Martínez-López, José Antonio</creator><creator>Fernández-Chacón, Rafael</creator><creator>Parak, Wolfgang J</creator><creator>Elsasser, Hans-Peter</creator><creator>Rivera_Gil, Pilar</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130827</creationdate><title>Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells</title><author>Kastl, Lena ; Sasse, Daniel ; Wulf, Verena ; Hartmann, Raimo ; Mircheski, Josif ; Ranke, Christiane ; Carregal-Romero, Susana ; Martínez-López, José Antonio ; Fernández-Chacón, Rafael ; Parak, Wolfgang J ; Elsasser, Hans-Peter ; Rivera_Gil, Pilar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Capsules - chemistry</topic><topic>Caveolae - chemistry</topic><topic>Cell Line, Tumor</topic><topic>Clathrin - chemistry</topic><topic>Cytoplasm - metabolism</topic><topic>Drug Delivery Systems</topic><topic>Electrolytes - chemistry</topic><topic>Electrostatics</topic><topic>Endocytosis</topic><topic>Formations</topic><topic>Humans</topic><topic>Lipids</topic><topic>Membrane Microdomains - chemistry</topic><topic>Mice</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron</topic><topic>Mitochondria - metabolism</topic><topic>Multilayers</topic><topic>Nanotechnology - methods</topic><topic>Pathways</topic><topic>Phagocytosis</topic><topic>Phagosomes - chemistry</topic><topic>Polyelectrolytes</topic><topic>Rafts</topic><topic>Static Electricity</topic><topic>Uptakes</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kastl, Lena</creatorcontrib><creatorcontrib>Sasse, Daniel</creatorcontrib><creatorcontrib>Wulf, Verena</creatorcontrib><creatorcontrib>Hartmann, Raimo</creatorcontrib><creatorcontrib>Mircheski, Josif</creatorcontrib><creatorcontrib>Ranke, Christiane</creatorcontrib><creatorcontrib>Carregal-Romero, Susana</creatorcontrib><creatorcontrib>Martínez-López, José Antonio</creatorcontrib><creatorcontrib>Fernández-Chacón, Rafael</creatorcontrib><creatorcontrib>Parak, Wolfgang J</creatorcontrib><creatorcontrib>Elsasser, Hans-Peter</creatorcontrib><creatorcontrib>Rivera_Gil, Pilar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kastl, Lena</au><au>Sasse, Daniel</au><au>Wulf, Verena</au><au>Hartmann, Raimo</au><au>Mircheski, Josif</au><au>Ranke, Christiane</au><au>Carregal-Romero, Susana</au><au>Martínez-López, José Antonio</au><au>Fernández-Chacón, Rafael</au><au>Parak, Wolfgang J</au><au>Elsasser, Hans-Peter</au><au>Rivera_Gil, Pilar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-08-27</date><risdate>2013</risdate><volume>7</volume><issue>8</issue><spage>6605</spage><epage>6618</epage><pages>6605-6618</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23826767</pmid><doi>10.1021/nn306032k</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2013-08, Vol.7 (8), p.6605-6618 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762053769 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Adsorption Animals Biocompatible Materials - chemistry Capsules - chemistry Caveolae - chemistry Cell Line, Tumor Clathrin - chemistry Cytoplasm - metabolism Drug Delivery Systems Electrolytes - chemistry Electrostatics Endocytosis Formations Humans Lipids Membrane Microdomains - chemistry Mice Microscopy, Confocal Microscopy, Electron Mitochondria - metabolism Multilayers Nanotechnology - methods Pathways Phagocytosis Phagosomes - chemistry Polyelectrolytes Rafts Static Electricity Uptakes Vesicles |
title | Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Internalization%20Pathways%20of%20Polyelectrolyte%20Multilayer%20Capsules%20into%20Mammalian%20Cells&rft.jtitle=ACS%20nano&rft.au=Kastl,%20Lena&rft.date=2013-08-27&rft.volume=7&rft.issue=8&rft.spage=6605&rft.epage=6618&rft.pages=6605-6618&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn306032k&rft_dat=%3Cproquest_cross%3E1428516439%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428516439&rft_id=info:pmid/23826767&rfr_iscdi=true |