Loading…

Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells

Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigate...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2013-08, Vol.7 (8), p.6605-6618
Main Authors: Kastl, Lena, Sasse, Daniel, Wulf, Verena, Hartmann, Raimo, Mircheski, Josif, Ranke, Christiane, Carregal-Romero, Susana, Martínez-López, José Antonio, Fernández-Chacón, Rafael, Parak, Wolfgang J, Elsasser, Hans-Peter, Rivera_Gil, Pilar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473
cites cdi_FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473
container_end_page 6618
container_issue 8
container_start_page 6605
container_title ACS nano
container_volume 7
creator Kastl, Lena
Sasse, Daniel
Wulf, Verena
Hartmann, Raimo
Mircheski, Josif
Ranke, Christiane
Carregal-Romero, Susana
Martínez-López, José Antonio
Fernández-Chacón, Rafael
Parak, Wolfgang J
Elsasser, Hans-Peter
Rivera_Gil, Pilar
description Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes.
doi_str_mv 10.1021/nn306032k
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762053769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1428516439</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473</originalsourceid><addsrcrecordid>eNqFkEtLw0AQgBdRbH0c_AOyF0EP0X1kd9OjBB-FFntQ8CJh3E4wdZPU7AaJv97U1p4ETzOHbz6Gj5ATzi45E_yqqiTTTIr3HTLkI6kjlujn3e2u-IAceL9gTJnE6H0yEDIR2mgzJC_T1oVi6ZCOq4BNBa74glDUFZ1BePuEztM6p7PadejQhqZfAtKfIwcdNjSFpW8delpUoaZTKMteARVN0Tl_RPZycB6PN_OQPN3ePKb30eThbpxeTyKQcRIiUIrzeW6UEWBii3PDtQSQaIFrY43JAUErgSxmpoctWAFWjYRIEFhs5CE5X3uXTf3Rog9ZWXjbfwAV1q3PuNGCKWn06H80Fn0wHcsVerFGbVN732CeLZuihKbLOMtW4bNt-J493Wjb1xLnW_K3dA-crQGwPlvU7Sq1_0P0DZzMixw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428516439</pqid></control><display><type>article</type><title>Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kastl, Lena ; Sasse, Daniel ; Wulf, Verena ; Hartmann, Raimo ; Mircheski, Josif ; Ranke, Christiane ; Carregal-Romero, Susana ; Martínez-López, José Antonio ; Fernández-Chacón, Rafael ; Parak, Wolfgang J ; Elsasser, Hans-Peter ; Rivera_Gil, Pilar</creator><creatorcontrib>Kastl, Lena ; Sasse, Daniel ; Wulf, Verena ; Hartmann, Raimo ; Mircheski, Josif ; Ranke, Christiane ; Carregal-Romero, Susana ; Martínez-López, José Antonio ; Fernández-Chacón, Rafael ; Parak, Wolfgang J ; Elsasser, Hans-Peter ; Rivera_Gil, Pilar</creatorcontrib><description>Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn306032k</identifier><identifier>PMID: 23826767</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Animals ; Biocompatible Materials - chemistry ; Capsules - chemistry ; Caveolae - chemistry ; Cell Line, Tumor ; Clathrin - chemistry ; Cytoplasm - metabolism ; Drug Delivery Systems ; Electrolytes - chemistry ; Electrostatics ; Endocytosis ; Formations ; Humans ; Lipids ; Membrane Microdomains - chemistry ; Mice ; Microscopy, Confocal ; Microscopy, Electron ; Mitochondria - metabolism ; Multilayers ; Nanotechnology - methods ; Pathways ; Phagocytosis ; Phagosomes - chemistry ; Polyelectrolytes ; Rafts ; Static Electricity ; Uptakes ; Vesicles</subject><ispartof>ACS nano, 2013-08, Vol.7 (8), p.6605-6618</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473</citedby><cites>FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23826767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kastl, Lena</creatorcontrib><creatorcontrib>Sasse, Daniel</creatorcontrib><creatorcontrib>Wulf, Verena</creatorcontrib><creatorcontrib>Hartmann, Raimo</creatorcontrib><creatorcontrib>Mircheski, Josif</creatorcontrib><creatorcontrib>Ranke, Christiane</creatorcontrib><creatorcontrib>Carregal-Romero, Susana</creatorcontrib><creatorcontrib>Martínez-López, José Antonio</creatorcontrib><creatorcontrib>Fernández-Chacón, Rafael</creatorcontrib><creatorcontrib>Parak, Wolfgang J</creatorcontrib><creatorcontrib>Elsasser, Hans-Peter</creatorcontrib><creatorcontrib>Rivera_Gil, Pilar</creatorcontrib><title>Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes.</description><subject>Adsorption</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Capsules - chemistry</subject><subject>Caveolae - chemistry</subject><subject>Cell Line, Tumor</subject><subject>Clathrin - chemistry</subject><subject>Cytoplasm - metabolism</subject><subject>Drug Delivery Systems</subject><subject>Electrolytes - chemistry</subject><subject>Electrostatics</subject><subject>Endocytosis</subject><subject>Formations</subject><subject>Humans</subject><subject>Lipids</subject><subject>Membrane Microdomains - chemistry</subject><subject>Mice</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron</subject><subject>Mitochondria - metabolism</subject><subject>Multilayers</subject><subject>Nanotechnology - methods</subject><subject>Pathways</subject><subject>Phagocytosis</subject><subject>Phagosomes - chemistry</subject><subject>Polyelectrolytes</subject><subject>Rafts</subject><subject>Static Electricity</subject><subject>Uptakes</subject><subject>Vesicles</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AQgBdRbH0c_AOyF0EP0X1kd9OjBB-FFntQ8CJh3E4wdZPU7AaJv97U1p4ETzOHbz6Gj5ATzi45E_yqqiTTTIr3HTLkI6kjlujn3e2u-IAceL9gTJnE6H0yEDIR2mgzJC_T1oVi6ZCOq4BNBa74glDUFZ1BePuEztM6p7PadejQhqZfAtKfIwcdNjSFpW8delpUoaZTKMteARVN0Tl_RPZycB6PN_OQPN3ePKb30eThbpxeTyKQcRIiUIrzeW6UEWBii3PDtQSQaIFrY43JAUErgSxmpoctWAFWjYRIEFhs5CE5X3uXTf3Rog9ZWXjbfwAV1q3PuNGCKWn06H80Fn0wHcsVerFGbVN732CeLZuihKbLOMtW4bNt-J493Wjb1xLnW_K3dA-crQGwPlvU7Sq1_0P0DZzMixw</recordid><startdate>20130827</startdate><enddate>20130827</enddate><creator>Kastl, Lena</creator><creator>Sasse, Daniel</creator><creator>Wulf, Verena</creator><creator>Hartmann, Raimo</creator><creator>Mircheski, Josif</creator><creator>Ranke, Christiane</creator><creator>Carregal-Romero, Susana</creator><creator>Martínez-López, José Antonio</creator><creator>Fernández-Chacón, Rafael</creator><creator>Parak, Wolfgang J</creator><creator>Elsasser, Hans-Peter</creator><creator>Rivera_Gil, Pilar</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130827</creationdate><title>Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells</title><author>Kastl, Lena ; Sasse, Daniel ; Wulf, Verena ; Hartmann, Raimo ; Mircheski, Josif ; Ranke, Christiane ; Carregal-Romero, Susana ; Martínez-López, José Antonio ; Fernández-Chacón, Rafael ; Parak, Wolfgang J ; Elsasser, Hans-Peter ; Rivera_Gil, Pilar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Capsules - chemistry</topic><topic>Caveolae - chemistry</topic><topic>Cell Line, Tumor</topic><topic>Clathrin - chemistry</topic><topic>Cytoplasm - metabolism</topic><topic>Drug Delivery Systems</topic><topic>Electrolytes - chemistry</topic><topic>Electrostatics</topic><topic>Endocytosis</topic><topic>Formations</topic><topic>Humans</topic><topic>Lipids</topic><topic>Membrane Microdomains - chemistry</topic><topic>Mice</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron</topic><topic>Mitochondria - metabolism</topic><topic>Multilayers</topic><topic>Nanotechnology - methods</topic><topic>Pathways</topic><topic>Phagocytosis</topic><topic>Phagosomes - chemistry</topic><topic>Polyelectrolytes</topic><topic>Rafts</topic><topic>Static Electricity</topic><topic>Uptakes</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kastl, Lena</creatorcontrib><creatorcontrib>Sasse, Daniel</creatorcontrib><creatorcontrib>Wulf, Verena</creatorcontrib><creatorcontrib>Hartmann, Raimo</creatorcontrib><creatorcontrib>Mircheski, Josif</creatorcontrib><creatorcontrib>Ranke, Christiane</creatorcontrib><creatorcontrib>Carregal-Romero, Susana</creatorcontrib><creatorcontrib>Martínez-López, José Antonio</creatorcontrib><creatorcontrib>Fernández-Chacón, Rafael</creatorcontrib><creatorcontrib>Parak, Wolfgang J</creatorcontrib><creatorcontrib>Elsasser, Hans-Peter</creatorcontrib><creatorcontrib>Rivera_Gil, Pilar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kastl, Lena</au><au>Sasse, Daniel</au><au>Wulf, Verena</au><au>Hartmann, Raimo</au><au>Mircheski, Josif</au><au>Ranke, Christiane</au><au>Carregal-Romero, Susana</au><au>Martínez-López, José Antonio</au><au>Fernández-Chacón, Rafael</au><au>Parak, Wolfgang J</au><au>Elsasser, Hans-Peter</au><au>Rivera_Gil, Pilar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-08-27</date><risdate>2013</risdate><volume>7</volume><issue>8</issue><spage>6605</spage><epage>6618</epage><pages>6605-6618</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23826767</pmid><doi>10.1021/nn306032k</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2013-08, Vol.7 (8), p.6605-6618
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762053769
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Adsorption
Animals
Biocompatible Materials - chemistry
Capsules - chemistry
Caveolae - chemistry
Cell Line, Tumor
Clathrin - chemistry
Cytoplasm - metabolism
Drug Delivery Systems
Electrolytes - chemistry
Electrostatics
Endocytosis
Formations
Humans
Lipids
Membrane Microdomains - chemistry
Mice
Microscopy, Confocal
Microscopy, Electron
Mitochondria - metabolism
Multilayers
Nanotechnology - methods
Pathways
Phagocytosis
Phagosomes - chemistry
Polyelectrolytes
Rafts
Static Electricity
Uptakes
Vesicles
title Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Internalization%20Pathways%20of%20Polyelectrolyte%20Multilayer%20Capsules%20into%20Mammalian%20Cells&rft.jtitle=ACS%20nano&rft.au=Kastl,%20Lena&rft.date=2013-08-27&rft.volume=7&rft.issue=8&rft.spage=6605&rft.epage=6618&rft.pages=6605-6618&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn306032k&rft_dat=%3Cproquest_cross%3E1428516439%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-a5511df7572a74ced7163aa3eca167c77faea652e0407a55cac2ac59228ea0473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428516439&rft_id=info:pmid/23826767&rfr_iscdi=true