Loading…

Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation

Metal nanostructures provide extreme focusing of optical energy that is limited fundamentally by quantum tunneling. We directly probe the onset of the quantum tunneling regime observed by a sharp reduction in the local field intensity in subnanometer self-assembled monolayer gaps using third harmoni...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2014-11, Vol.14 (11), p.6651-6654
Main Authors: Hajisalem, Ghazal, Nezami, Mohammedreza S, Gordon, Reuven
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163
cites cdi_FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163
container_end_page 6654
container_issue 11
container_start_page 6651
container_title Nano letters
container_volume 14
creator Hajisalem, Ghazal
Nezami, Mohammedreza S
Gordon, Reuven
description Metal nanostructures provide extreme focusing of optical energy that is limited fundamentally by quantum tunneling. We directly probe the onset of the quantum tunneling regime observed by a sharp reduction in the local field intensity in subnanometer self-assembled monolayer gaps using third harmonic generation. Unlike past works that have inferred local limits from far-field spectra, this nonlinear measurement is sensitive to the near-field intensity as the third power. We calculate the local field intensity using a quantum corrected model and find good quantitative agreement with the measured third harmonic. The onset of the quantum regime occurs for double the gap size of past studies because of the reduced barrier height of the self-assembled monolayer, which will be critical for many applications of plasmonics, including nonlinear optics and surface enhanced Raman spectroscopy.
doi_str_mv 10.1021/nl503324g
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762053976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762053976</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EolAY-APICxIMAX_EcTKiqrRIlShSGZiii-O0rhK72MnQf0-qlnZhuld3j96THoTuKHmmhNEXWwvCOYuXZ-iKCk6iJMvY-TGn8QBdh7AmhGRckEs0YIIzFkt6hb7n3hXGLnG70vizA9t2DV501up6t52ZxrTYVXheQ2icNQqP7Qqs0o22LS62eLEyvsRT8PvrRFvtoTXO3qCLCuqgbw9ziL7exovRNJp9TN5Hr7MIuEzbKNYlB8go52VF-0ykKBJVAMikzCQI0FJUwEiRpIxnhdKKpEpRSWSloKQJH6LHfe_Gu59OhzZvTFC6rsFq14WcyoQRwTO5Q5_2qPIuBK-rfONNA36bU5LvTOZHkz17f6jtikaXR_JPXQ88HAAICurK91ZMOHEZSSnh8sSBCvnadd72Nv55-Aukr4fB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762053976</pqid></control><display><type>article</type><title>Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hajisalem, Ghazal ; Nezami, Mohammedreza S ; Gordon, Reuven</creator><creatorcontrib>Hajisalem, Ghazal ; Nezami, Mohammedreza S ; Gordon, Reuven</creatorcontrib><description>Metal nanostructures provide extreme focusing of optical energy that is limited fundamentally by quantum tunneling. We directly probe the onset of the quantum tunneling regime observed by a sharp reduction in the local field intensity in subnanometer self-assembled monolayer gaps using third harmonic generation. Unlike past works that have inferred local limits from far-field spectra, this nonlinear measurement is sensitive to the near-field intensity as the third power. We calculate the local field intensity using a quantum corrected model and find good quantitative agreement with the measured third harmonic. The onset of the quantum regime occurs for double the gap size of past studies because of the reduced barrier height of the self-assembled monolayer, which will be critical for many applications of plasmonics, including nonlinear optics and surface enhanced Raman spectroscopy.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl503324g</identifier><identifier>PMID: 25322471</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Focusing ; Harmonic generations ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Methods of nanofabrication ; Nanostructure ; Nonlinear optics ; Physics ; Plasmonics ; Quantum tunnelling ; Self-assembled monolayers ; Self-assembly ; Spectra ; Surface and interface electron states ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano letters, 2014-11, Vol.14 (11), p.6651-6654</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163</citedby><cites>FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29081037$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25322471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hajisalem, Ghazal</creatorcontrib><creatorcontrib>Nezami, Mohammedreza S</creatorcontrib><creatorcontrib>Gordon, Reuven</creatorcontrib><title>Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Metal nanostructures provide extreme focusing of optical energy that is limited fundamentally by quantum tunneling. We directly probe the onset of the quantum tunneling regime observed by a sharp reduction in the local field intensity in subnanometer self-assembled monolayer gaps using third harmonic generation. Unlike past works that have inferred local limits from far-field spectra, this nonlinear measurement is sensitive to the near-field intensity as the third power. We calculate the local field intensity using a quantum corrected model and find good quantitative agreement with the measured third harmonic. The onset of the quantum regime occurs for double the gap size of past studies because of the reduced barrier height of the self-assembled monolayer, which will be critical for many applications of plasmonics, including nonlinear optics and surface enhanced Raman spectroscopy.</description><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Focusing</subject><subject>Harmonic generations</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanostructure</subject><subject>Nonlinear optics</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Quantum tunnelling</subject><subject>Self-assembled monolayers</subject><subject>Self-assembly</subject><subject>Spectra</subject><subject>Surface and interface electron states</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EolAY-APICxIMAX_EcTKiqrRIlShSGZiii-O0rhK72MnQf0-qlnZhuld3j96THoTuKHmmhNEXWwvCOYuXZ-iKCk6iJMvY-TGn8QBdh7AmhGRckEs0YIIzFkt6hb7n3hXGLnG70vizA9t2DV501up6t52ZxrTYVXheQ2icNQqP7Qqs0o22LS62eLEyvsRT8PvrRFvtoTXO3qCLCuqgbw9ziL7exovRNJp9TN5Hr7MIuEzbKNYlB8go52VF-0ykKBJVAMikzCQI0FJUwEiRpIxnhdKKpEpRSWSloKQJH6LHfe_Gu59OhzZvTFC6rsFq14WcyoQRwTO5Q5_2qPIuBK-rfONNA36bU5LvTOZHkz17f6jtikaXR_JPXQ88HAAICurK91ZMOHEZSSnh8sSBCvnadd72Nv55-Aukr4fB</recordid><startdate>20141112</startdate><enddate>20141112</enddate><creator>Hajisalem, Ghazal</creator><creator>Nezami, Mohammedreza S</creator><creator>Gordon, Reuven</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141112</creationdate><title>Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation</title><author>Hajisalem, Ghazal ; Nezami, Mohammedreza S ; Gordon, Reuven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Focusing</topic><topic>Harmonic generations</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanostructure</topic><topic>Nonlinear optics</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Quantum tunnelling</topic><topic>Self-assembled monolayers</topic><topic>Self-assembly</topic><topic>Spectra</topic><topic>Surface and interface electron states</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajisalem, Ghazal</creatorcontrib><creatorcontrib>Nezami, Mohammedreza S</creatorcontrib><creatorcontrib>Gordon, Reuven</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajisalem, Ghazal</au><au>Nezami, Mohammedreza S</au><au>Gordon, Reuven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-11-12</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>6651</spage><epage>6654</epage><pages>6651-6654</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Metal nanostructures provide extreme focusing of optical energy that is limited fundamentally by quantum tunneling. We directly probe the onset of the quantum tunneling regime observed by a sharp reduction in the local field intensity in subnanometer self-assembled monolayer gaps using third harmonic generation. Unlike past works that have inferred local limits from far-field spectra, this nonlinear measurement is sensitive to the near-field intensity as the third power. We calculate the local field intensity using a quantum corrected model and find good quantitative agreement with the measured third harmonic. The onset of the quantum regime occurs for double the gap size of past studies because of the reduced barrier height of the self-assembled monolayer, which will be critical for many applications of plasmonics, including nonlinear optics and surface enhanced Raman spectroscopy.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25322471</pmid><doi>10.1021/nl503324g</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2014-11, Vol.14 (11), p.6651-6654
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762053976
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Focusing
Harmonic generations
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Methods of nanofabrication
Nanostructure
Nonlinear optics
Physics
Plasmonics
Quantum tunnelling
Self-assembled monolayers
Self-assembly
Spectra
Surface and interface electron states
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Quantum%20Tunneling%20Limit%20of%20Plasmonic%20Enhancement%20by%20Third%20Harmonic%20Generation&rft.jtitle=Nano%20letters&rft.au=Hajisalem,%20Ghazal&rft.date=2014-11-12&rft.volume=14&rft.issue=11&rft.spage=6651&rft.epage=6654&rft.pages=6651-6654&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl503324g&rft_dat=%3Cproquest_cross%3E1762053976%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762053976&rft_id=info:pmid/25322471&rfr_iscdi=true