Loading…
Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation
Metal nanostructures provide extreme focusing of optical energy that is limited fundamentally by quantum tunneling. We directly probe the onset of the quantum tunneling regime observed by a sharp reduction in the local field intensity in subnanometer self-assembled monolayer gaps using third harmoni...
Saved in:
Published in: | Nano letters 2014-11, Vol.14 (11), p.6651-6654 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163 |
---|---|
cites | cdi_FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163 |
container_end_page | 6654 |
container_issue | 11 |
container_start_page | 6651 |
container_title | Nano letters |
container_volume | 14 |
creator | Hajisalem, Ghazal Nezami, Mohammedreza S Gordon, Reuven |
description | Metal nanostructures provide extreme focusing of optical energy that is limited fundamentally by quantum tunneling. We directly probe the onset of the quantum tunneling regime observed by a sharp reduction in the local field intensity in subnanometer self-assembled monolayer gaps using third harmonic generation. Unlike past works that have inferred local limits from far-field spectra, this nonlinear measurement is sensitive to the near-field intensity as the third power. We calculate the local field intensity using a quantum corrected model and find good quantitative agreement with the measured third harmonic. The onset of the quantum regime occurs for double the gap size of past studies because of the reduced barrier height of the self-assembled monolayer, which will be critical for many applications of plasmonics, including nonlinear optics and surface enhanced Raman spectroscopy. |
doi_str_mv | 10.1021/nl503324g |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762053976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762053976</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EolAY-APICxIMAX_EcTKiqrRIlShSGZiii-O0rhK72MnQf0-qlnZhuld3j96THoTuKHmmhNEXWwvCOYuXZ-iKCk6iJMvY-TGn8QBdh7AmhGRckEs0YIIzFkt6hb7n3hXGLnG70vizA9t2DV501up6t52ZxrTYVXheQ2icNQqP7Qqs0o22LS62eLEyvsRT8PvrRFvtoTXO3qCLCuqgbw9ziL7exovRNJp9TN5Hr7MIuEzbKNYlB8go52VF-0ykKBJVAMikzCQI0FJUwEiRpIxnhdKKpEpRSWSloKQJH6LHfe_Gu59OhzZvTFC6rsFq14WcyoQRwTO5Q5_2qPIuBK-rfONNA36bU5LvTOZHkz17f6jtikaXR_JPXQ88HAAICurK91ZMOHEZSSnh8sSBCvnadd72Nv55-Aukr4fB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762053976</pqid></control><display><type>article</type><title>Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hajisalem, Ghazal ; Nezami, Mohammedreza S ; Gordon, Reuven</creator><creatorcontrib>Hajisalem, Ghazal ; Nezami, Mohammedreza S ; Gordon, Reuven</creatorcontrib><description>Metal nanostructures provide extreme focusing of optical energy that is limited fundamentally by quantum tunneling. We directly probe the onset of the quantum tunneling regime observed by a sharp reduction in the local field intensity in subnanometer self-assembled monolayer gaps using third harmonic generation. Unlike past works that have inferred local limits from far-field spectra, this nonlinear measurement is sensitive to the near-field intensity as the third power. We calculate the local field intensity using a quantum corrected model and find good quantitative agreement with the measured third harmonic. The onset of the quantum regime occurs for double the gap size of past studies because of the reduced barrier height of the self-assembled monolayer, which will be critical for many applications of plasmonics, including nonlinear optics and surface enhanced Raman spectroscopy.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl503324g</identifier><identifier>PMID: 25322471</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Focusing ; Harmonic generations ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Methods of nanofabrication ; Nanostructure ; Nonlinear optics ; Physics ; Plasmonics ; Quantum tunnelling ; Self-assembled monolayers ; Self-assembly ; Spectra ; Surface and interface electron states ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano letters, 2014-11, Vol.14 (11), p.6651-6654</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163</citedby><cites>FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29081037$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25322471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hajisalem, Ghazal</creatorcontrib><creatorcontrib>Nezami, Mohammedreza S</creatorcontrib><creatorcontrib>Gordon, Reuven</creatorcontrib><title>Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Metal nanostructures provide extreme focusing of optical energy that is limited fundamentally by quantum tunneling. We directly probe the onset of the quantum tunneling regime observed by a sharp reduction in the local field intensity in subnanometer self-assembled monolayer gaps using third harmonic generation. Unlike past works that have inferred local limits from far-field spectra, this nonlinear measurement is sensitive to the near-field intensity as the third power. We calculate the local field intensity using a quantum corrected model and find good quantitative agreement with the measured third harmonic. The onset of the quantum regime occurs for double the gap size of past studies because of the reduced barrier height of the self-assembled monolayer, which will be critical for many applications of plasmonics, including nonlinear optics and surface enhanced Raman spectroscopy.</description><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Focusing</subject><subject>Harmonic generations</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanostructure</subject><subject>Nonlinear optics</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Quantum tunnelling</subject><subject>Self-assembled monolayers</subject><subject>Self-assembly</subject><subject>Spectra</subject><subject>Surface and interface electron states</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EolAY-APICxIMAX_EcTKiqrRIlShSGZiii-O0rhK72MnQf0-qlnZhuld3j96THoTuKHmmhNEXWwvCOYuXZ-iKCk6iJMvY-TGn8QBdh7AmhGRckEs0YIIzFkt6hb7n3hXGLnG70vizA9t2DV501up6t52ZxrTYVXheQ2icNQqP7Qqs0o22LS62eLEyvsRT8PvrRFvtoTXO3qCLCuqgbw9ziL7exovRNJp9TN5Hr7MIuEzbKNYlB8go52VF-0ykKBJVAMikzCQI0FJUwEiRpIxnhdKKpEpRSWSloKQJH6LHfe_Gu59OhzZvTFC6rsFq14WcyoQRwTO5Q5_2qPIuBK-rfONNA36bU5LvTOZHkz17f6jtikaXR_JPXQ88HAAICurK91ZMOHEZSSnh8sSBCvnadd72Nv55-Aukr4fB</recordid><startdate>20141112</startdate><enddate>20141112</enddate><creator>Hajisalem, Ghazal</creator><creator>Nezami, Mohammedreza S</creator><creator>Gordon, Reuven</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141112</creationdate><title>Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation</title><author>Hajisalem, Ghazal ; Nezami, Mohammedreza S ; Gordon, Reuven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Focusing</topic><topic>Harmonic generations</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanostructure</topic><topic>Nonlinear optics</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Quantum tunnelling</topic><topic>Self-assembled monolayers</topic><topic>Self-assembly</topic><topic>Spectra</topic><topic>Surface and interface electron states</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajisalem, Ghazal</creatorcontrib><creatorcontrib>Nezami, Mohammedreza S</creatorcontrib><creatorcontrib>Gordon, Reuven</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajisalem, Ghazal</au><au>Nezami, Mohammedreza S</au><au>Gordon, Reuven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-11-12</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>6651</spage><epage>6654</epage><pages>6651-6654</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Metal nanostructures provide extreme focusing of optical energy that is limited fundamentally by quantum tunneling. We directly probe the onset of the quantum tunneling regime observed by a sharp reduction in the local field intensity in subnanometer self-assembled monolayer gaps using third harmonic generation. Unlike past works that have inferred local limits from far-field spectra, this nonlinear measurement is sensitive to the near-field intensity as the third power. We calculate the local field intensity using a quantum corrected model and find good quantitative agreement with the measured third harmonic. The onset of the quantum regime occurs for double the gap size of past studies because of the reduced barrier height of the self-assembled monolayer, which will be critical for many applications of plasmonics, including nonlinear optics and surface enhanced Raman spectroscopy.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25322471</pmid><doi>10.1021/nl503324g</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2014-11, Vol.14 (11), p.6651-6654 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762053976 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Focusing Harmonic generations Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Methods of nanofabrication Nanostructure Nonlinear optics Physics Plasmonics Quantum tunnelling Self-assembled monolayers Self-assembly Spectra Surface and interface electron states Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Quantum%20Tunneling%20Limit%20of%20Plasmonic%20Enhancement%20by%20Third%20Harmonic%20Generation&rft.jtitle=Nano%20letters&rft.au=Hajisalem,%20Ghazal&rft.date=2014-11-12&rft.volume=14&rft.issue=11&rft.spage=6651&rft.epage=6654&rft.pages=6651-6654&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl503324g&rft_dat=%3Cproquest_cross%3E1762053976%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a378t-4ed3aa9133df1ed3075b6cbaa76d97a5ae75fa20b68239bcec08cc1707fcad163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762053976&rft_id=info:pmid/25322471&rfr_iscdi=true |