Loading…
Plasmonic Photoanodes for Solar Water Splitting with Visible Light
We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array...
Saved in:
Published in: | Nano letters 2012-09, Vol.12 (9), p.5014-5019 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3 |
container_end_page | 5019 |
container_issue | 9 |
container_start_page | 5014 |
container_title | Nano letters |
container_volume | 12 |
creator | Lee, Joun Mubeen, Syed Ji, Xiulei Stucky, Galen D Moskovits, Martin |
description | We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array of aligned gold nanorods capped with TiO2, forming a Schottky metal/semiconductor interface which collects and conducts the hot electrons to an unilluminated platinum counter-electrode where hydrogen gas evolves. The resultant positive charges in the Au nanorods function as holes and are extracted by an oxidation catalyst which electrocatalytically oxidizes water to oxygen gas. |
doi_str_mv | 10.1021/nl302796f |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762055418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1039346662</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3</originalsourceid><addsrcrecordid>eNqF0EtLAzEUBeAgitbqwj8gsxF0Ub15zmSp4gsKCr6Ww51Mxqakk5pMEf-9I611I7i6Z_FxLhxCDiicUmD0rPUcWK5Vs0EGVHIYKa3Z5joXYofspjQFAM0lbJMdxjRVWsoBuXjwmGahdSZ7mIQuYBtqm7ImxOwxeIzZK3a2z3Pvus61b9mH6ybZi0uu8jYbu7dJt0e2GvTJ7q_ukDxfXz1d3o7G9zd3l-fjEQoB3ciISvCqKLCgFJkwtK4MUl1YpqRtQFBlEfMaFNMFABeyAYq20Fjn0Oi84kNyvOydx_C-sKkrZy4Z6z22NixSSXPFQEpBi_8pcM2FUor19GRJTQwpRduU8-hmGD97VH6vW67X7e3hqnZRzWy9lj9z9uBoBTAZ9E3E1rj06xSXlEL-69CkchoWse2H--PhF-VrjBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039346662</pqid></control><display><type>article</type><title>Plasmonic Photoanodes for Solar Water Splitting with Visible Light</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lee, Joun ; Mubeen, Syed ; Ji, Xiulei ; Stucky, Galen D ; Moskovits, Martin</creator><creatorcontrib>Lee, Joun ; Mubeen, Syed ; Ji, Xiulei ; Stucky, Galen D ; Moskovits, Martin</creatorcontrib><description>We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array of aligned gold nanorods capped with TiO2, forming a Schottky metal/semiconductor interface which collects and conducts the hot electrons to an unilluminated platinum counter-electrode where hydrogen gas evolves. The resultant positive charges in the Au nanorods function as holes and are extracted by an oxidation catalyst which electrocatalytically oxidizes water to oxygen gas.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl302796f</identifier><identifier>PMID: 22916955</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Arrays ; Catalytic methods ; Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electrochemistry - instrumentation ; Electrodes ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Gold ; Hot electrons ; Hydrogen - chemistry ; Hydrogen - isolation & purification ; Light ; Materials science ; Methods of nanofabrication ; Nanocrystalline materials ; Nanorods ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - radiation effects ; Nanostructures - ultrastructure ; Nanotubes ; Oxygen - chemistry ; Oxygen - isolation & purification ; Physics ; Plasmonics ; Semiconductors ; Solar Energy ; Surface and interface electron states ; Surface Plasmon Resonance - instrumentation ; Titanium - chemistry ; Titanium - radiation effects ; Titanium dioxide ; Water - chemistry ; Water splitting</subject><ispartof>Nano letters, 2012-09, Vol.12 (9), p.5014-5019</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3</citedby><cites>FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26351107$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22916955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Joun</creatorcontrib><creatorcontrib>Mubeen, Syed</creatorcontrib><creatorcontrib>Ji, Xiulei</creatorcontrib><creatorcontrib>Stucky, Galen D</creatorcontrib><creatorcontrib>Moskovits, Martin</creatorcontrib><title>Plasmonic Photoanodes for Solar Water Splitting with Visible Light</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array of aligned gold nanorods capped with TiO2, forming a Schottky metal/semiconductor interface which collects and conducts the hot electrons to an unilluminated platinum counter-electrode where hydrogen gas evolves. The resultant positive charges in the Au nanorods function as holes and are extracted by an oxidation catalyst which electrocatalytically oxidizes water to oxygen gas.</description><subject>Arrays</subject><subject>Catalytic methods</subject><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrochemistry - instrumentation</subject><subject>Electrodes</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Hot electrons</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen - isolation & purification</subject><subject>Light</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanorods</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - radiation effects</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotubes</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - isolation & purification</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Semiconductors</subject><subject>Solar Energy</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance - instrumentation</subject><subject>Titanium - chemistry</subject><subject>Titanium - radiation effects</subject><subject>Titanium dioxide</subject><subject>Water - chemistry</subject><subject>Water splitting</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLAzEUBeAgitbqwj8gsxF0Ub15zmSp4gsKCr6Ww51Mxqakk5pMEf-9I611I7i6Z_FxLhxCDiicUmD0rPUcWK5Vs0EGVHIYKa3Z5joXYofspjQFAM0lbJMdxjRVWsoBuXjwmGahdSZ7mIQuYBtqm7ImxOwxeIzZK3a2z3Pvus61b9mH6ybZi0uu8jYbu7dJt0e2GvTJ7q_ukDxfXz1d3o7G9zd3l-fjEQoB3ciISvCqKLCgFJkwtK4MUl1YpqRtQFBlEfMaFNMFABeyAYq20Fjn0Oi84kNyvOydx_C-sKkrZy4Z6z22NixSSXPFQEpBi_8pcM2FUor19GRJTQwpRduU8-hmGD97VH6vW67X7e3hqnZRzWy9lj9z9uBoBTAZ9E3E1rj06xSXlEL-69CkchoWse2H--PhF-VrjBY</recordid><startdate>20120912</startdate><enddate>20120912</enddate><creator>Lee, Joun</creator><creator>Mubeen, Syed</creator><creator>Ji, Xiulei</creator><creator>Stucky, Galen D</creator><creator>Moskovits, Martin</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120912</creationdate><title>Plasmonic Photoanodes for Solar Water Splitting with Visible Light</title><author>Lee, Joun ; Mubeen, Syed ; Ji, Xiulei ; Stucky, Galen D ; Moskovits, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrays</topic><topic>Catalytic methods</topic><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrochemistry - instrumentation</topic><topic>Electrodes</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Hot electrons</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen - isolation & purification</topic><topic>Light</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanorods</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - radiation effects</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotubes</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - isolation & purification</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Semiconductors</topic><topic>Solar Energy</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance - instrumentation</topic><topic>Titanium - chemistry</topic><topic>Titanium - radiation effects</topic><topic>Titanium dioxide</topic><topic>Water - chemistry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joun</creatorcontrib><creatorcontrib>Mubeen, Syed</creatorcontrib><creatorcontrib>Ji, Xiulei</creatorcontrib><creatorcontrib>Stucky, Galen D</creatorcontrib><creatorcontrib>Moskovits, Martin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Joun</au><au>Mubeen, Syed</au><au>Ji, Xiulei</au><au>Stucky, Galen D</au><au>Moskovits, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Photoanodes for Solar Water Splitting with Visible Light</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-09-12</date><risdate>2012</risdate><volume>12</volume><issue>9</issue><spage>5014</spage><epage>5019</epage><pages>5014-5019</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array of aligned gold nanorods capped with TiO2, forming a Schottky metal/semiconductor interface which collects and conducts the hot electrons to an unilluminated platinum counter-electrode where hydrogen gas evolves. The resultant positive charges in the Au nanorods function as holes and are extracted by an oxidation catalyst which electrocatalytically oxidizes water to oxygen gas.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22916955</pmid><doi>10.1021/nl302796f</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2012-09, Vol.12 (9), p.5014-5019 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762055418 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Arrays Catalytic methods Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electrochemistry - instrumentation Electrodes Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Equipment Design Equipment Failure Analysis Exact sciences and technology Gold Hot electrons Hydrogen - chemistry Hydrogen - isolation & purification Light Materials science Methods of nanofabrication Nanocrystalline materials Nanorods Nanoscale materials and structures: fabrication and characterization Nanostructure Nanostructures - chemistry Nanostructures - radiation effects Nanostructures - ultrastructure Nanotubes Oxygen - chemistry Oxygen - isolation & purification Physics Plasmonics Semiconductors Solar Energy Surface and interface electron states Surface Plasmon Resonance - instrumentation Titanium - chemistry Titanium - radiation effects Titanium dioxide Water - chemistry Water splitting |
title | Plasmonic Photoanodes for Solar Water Splitting with Visible Light |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Photoanodes%20for%20Solar%20Water%20Splitting%20with%20Visible%20Light&rft.jtitle=Nano%20letters&rft.au=Lee,%20Joun&rft.date=2012-09-12&rft.volume=12&rft.issue=9&rft.spage=5014&rft.epage=5019&rft.pages=5014-5019&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl302796f&rft_dat=%3Cproquest_cross%3E1039346662%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1039346662&rft_id=info:pmid/22916955&rfr_iscdi=true |