Loading…

Plasmonic Photoanodes for Solar Water Splitting with Visible Light

We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2012-09, Vol.12 (9), p.5014-5019
Main Authors: Lee, Joun, Mubeen, Syed, Ji, Xiulei, Stucky, Galen D, Moskovits, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3
cites cdi_FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3
container_end_page 5019
container_issue 9
container_start_page 5014
container_title Nano letters
container_volume 12
creator Lee, Joun
Mubeen, Syed
Ji, Xiulei
Stucky, Galen D
Moskovits, Martin
description We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array of aligned gold nanorods capped with TiO2, forming a Schottky metal/semiconductor interface which collects and conducts the hot electrons to an unilluminated platinum counter-electrode where hydrogen gas evolves. The resultant positive charges in the Au nanorods function as holes and are extracted by an oxidation catalyst which electrocatalytically oxidizes water to oxygen gas.
doi_str_mv 10.1021/nl302796f
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762055418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1039346662</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3</originalsourceid><addsrcrecordid>eNqF0EtLAzEUBeAgitbqwj8gsxF0Ub15zmSp4gsKCr6Ww51Mxqakk5pMEf-9I611I7i6Z_FxLhxCDiicUmD0rPUcWK5Vs0EGVHIYKa3Z5joXYofspjQFAM0lbJMdxjRVWsoBuXjwmGahdSZ7mIQuYBtqm7ImxOwxeIzZK3a2z3Pvus61b9mH6ybZi0uu8jYbu7dJt0e2GvTJ7q_ukDxfXz1d3o7G9zd3l-fjEQoB3ciISvCqKLCgFJkwtK4MUl1YpqRtQFBlEfMaFNMFABeyAYq20Fjn0Oi84kNyvOydx_C-sKkrZy4Z6z22NixSSXPFQEpBi_8pcM2FUor19GRJTQwpRduU8-hmGD97VH6vW67X7e3hqnZRzWy9lj9z9uBoBTAZ9E3E1rj06xSXlEL-69CkchoWse2H--PhF-VrjBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039346662</pqid></control><display><type>article</type><title>Plasmonic Photoanodes for Solar Water Splitting with Visible Light</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lee, Joun ; Mubeen, Syed ; Ji, Xiulei ; Stucky, Galen D ; Moskovits, Martin</creator><creatorcontrib>Lee, Joun ; Mubeen, Syed ; Ji, Xiulei ; Stucky, Galen D ; Moskovits, Martin</creatorcontrib><description>We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array of aligned gold nanorods capped with TiO2, forming a Schottky metal/semiconductor interface which collects and conducts the hot electrons to an unilluminated platinum counter-electrode where hydrogen gas evolves. The resultant positive charges in the Au nanorods function as holes and are extracted by an oxidation catalyst which electrocatalytically oxidizes water to oxygen gas.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl302796f</identifier><identifier>PMID: 22916955</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Arrays ; Catalytic methods ; Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electrochemistry - instrumentation ; Electrodes ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Gold ; Hot electrons ; Hydrogen - chemistry ; Hydrogen - isolation &amp; purification ; Light ; Materials science ; Methods of nanofabrication ; Nanocrystalline materials ; Nanorods ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - radiation effects ; Nanostructures - ultrastructure ; Nanotubes ; Oxygen - chemistry ; Oxygen - isolation &amp; purification ; Physics ; Plasmonics ; Semiconductors ; Solar Energy ; Surface and interface electron states ; Surface Plasmon Resonance - instrumentation ; Titanium - chemistry ; Titanium - radiation effects ; Titanium dioxide ; Water - chemistry ; Water splitting</subject><ispartof>Nano letters, 2012-09, Vol.12 (9), p.5014-5019</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3</citedby><cites>FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26351107$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22916955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Joun</creatorcontrib><creatorcontrib>Mubeen, Syed</creatorcontrib><creatorcontrib>Ji, Xiulei</creatorcontrib><creatorcontrib>Stucky, Galen D</creatorcontrib><creatorcontrib>Moskovits, Martin</creatorcontrib><title>Plasmonic Photoanodes for Solar Water Splitting with Visible Light</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array of aligned gold nanorods capped with TiO2, forming a Schottky metal/semiconductor interface which collects and conducts the hot electrons to an unilluminated platinum counter-electrode where hydrogen gas evolves. The resultant positive charges in the Au nanorods function as holes and are extracted by an oxidation catalyst which electrocatalytically oxidizes water to oxygen gas.</description><subject>Arrays</subject><subject>Catalytic methods</subject><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrochemistry - instrumentation</subject><subject>Electrodes</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Hot electrons</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen - isolation &amp; purification</subject><subject>Light</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanorods</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - radiation effects</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotubes</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - isolation &amp; purification</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Semiconductors</subject><subject>Solar Energy</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance - instrumentation</subject><subject>Titanium - chemistry</subject><subject>Titanium - radiation effects</subject><subject>Titanium dioxide</subject><subject>Water - chemistry</subject><subject>Water splitting</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLAzEUBeAgitbqwj8gsxF0Ub15zmSp4gsKCr6Ww51Mxqakk5pMEf-9I611I7i6Z_FxLhxCDiicUmD0rPUcWK5Vs0EGVHIYKa3Z5joXYofspjQFAM0lbJMdxjRVWsoBuXjwmGahdSZ7mIQuYBtqm7ImxOwxeIzZK3a2z3Pvus61b9mH6ybZi0uu8jYbu7dJt0e2GvTJ7q_ukDxfXz1d3o7G9zd3l-fjEQoB3ciISvCqKLCgFJkwtK4MUl1YpqRtQFBlEfMaFNMFABeyAYq20Fjn0Oi84kNyvOydx_C-sKkrZy4Z6z22NixSSXPFQEpBi_8pcM2FUor19GRJTQwpRduU8-hmGD97VH6vW67X7e3hqnZRzWy9lj9z9uBoBTAZ9E3E1rj06xSXlEL-69CkchoWse2H--PhF-VrjBY</recordid><startdate>20120912</startdate><enddate>20120912</enddate><creator>Lee, Joun</creator><creator>Mubeen, Syed</creator><creator>Ji, Xiulei</creator><creator>Stucky, Galen D</creator><creator>Moskovits, Martin</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120912</creationdate><title>Plasmonic Photoanodes for Solar Water Splitting with Visible Light</title><author>Lee, Joun ; Mubeen, Syed ; Ji, Xiulei ; Stucky, Galen D ; Moskovits, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrays</topic><topic>Catalytic methods</topic><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrochemistry - instrumentation</topic><topic>Electrodes</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Hot electrons</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen - isolation &amp; purification</topic><topic>Light</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanorods</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - radiation effects</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotubes</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - isolation &amp; purification</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Semiconductors</topic><topic>Solar Energy</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance - instrumentation</topic><topic>Titanium - chemistry</topic><topic>Titanium - radiation effects</topic><topic>Titanium dioxide</topic><topic>Water - chemistry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joun</creatorcontrib><creatorcontrib>Mubeen, Syed</creatorcontrib><creatorcontrib>Ji, Xiulei</creatorcontrib><creatorcontrib>Stucky, Galen D</creatorcontrib><creatorcontrib>Moskovits, Martin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Joun</au><au>Mubeen, Syed</au><au>Ji, Xiulei</au><au>Stucky, Galen D</au><au>Moskovits, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Photoanodes for Solar Water Splitting with Visible Light</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-09-12</date><risdate>2012</risdate><volume>12</volume><issue>9</issue><spage>5014</spage><epage>5019</epage><pages>5014-5019</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array of aligned gold nanorods capped with TiO2, forming a Schottky metal/semiconductor interface which collects and conducts the hot electrons to an unilluminated platinum counter-electrode where hydrogen gas evolves. The resultant positive charges in the Au nanorods function as holes and are extracted by an oxidation catalyst which electrocatalytically oxidizes water to oxygen gas.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22916955</pmid><doi>10.1021/nl302796f</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2012-09, Vol.12 (9), p.5014-5019
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762055418
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Arrays
Catalytic methods
Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electrochemistry - instrumentation
Electrodes
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Gold
Hot electrons
Hydrogen - chemistry
Hydrogen - isolation & purification
Light
Materials science
Methods of nanofabrication
Nanocrystalline materials
Nanorods
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanostructures - chemistry
Nanostructures - radiation effects
Nanostructures - ultrastructure
Nanotubes
Oxygen - chemistry
Oxygen - isolation & purification
Physics
Plasmonics
Semiconductors
Solar Energy
Surface and interface electron states
Surface Plasmon Resonance - instrumentation
Titanium - chemistry
Titanium - radiation effects
Titanium dioxide
Water - chemistry
Water splitting
title Plasmonic Photoanodes for Solar Water Splitting with Visible Light
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Photoanodes%20for%20Solar%20Water%20Splitting%20with%20Visible%20Light&rft.jtitle=Nano%20letters&rft.au=Lee,%20Joun&rft.date=2012-09-12&rft.volume=12&rft.issue=9&rft.spage=5014&rft.epage=5019&rft.pages=5014-5019&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl302796f&rft_dat=%3Cproquest_cross%3E1039346662%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a440t-c4b43b88a811a24c1dbca198e265ef0416eaa7d0629800345f01ae89ad70f97b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1039346662&rft_id=info:pmid/22916955&rfr_iscdi=true