Loading…
Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage
Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here,...
Saved in:
Published in: | Nano letters 2014-11, Vol.14 (11), p.6515-6519 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413 |
---|---|
cites | cdi_FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413 |
container_end_page | 6519 |
container_issue | 11 |
container_start_page | 6515 |
container_title | Nano letters |
container_volume | 14 |
creator | Wei, Yu-Jia He, Yu-Ming Chen, Ming-Cheng Hu, Yi-Nan He, Yu Wu, Dian Schneider, Christian Kamp, Martin Höfling, Sven Lu, Chao-Yang Pan, Jian-Wei |
description | Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong–Ou–Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing. |
doi_str_mv | 10.1021/nl503081n |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762057339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1624935828</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhtRTIwe_APSl0A8bOyPnZnuY0g0BgLGaM5DTX_sdpjpXrt6kPwI_7O9ZLO5CJ6qqHp4Cuol5D1np5wJ_imODZNM8fiCHPJGskWrtXi579XygLxBvGeMadmw1-RANLLp6vaQ_LlwxeUpxIAlGArR0ts0zFjopYsuQwkp0uTpjxBXo6M361RSROpzmig8Tb_PEMs80YtU6O9Q1lTr0-aYXkW7tcbVHHANQxhDeaB3WAf0zAYYYHvxFjbB0htAhJV7S155GNG929Ujcvfl88_zr4vrb5dX52fXC1hyWRZOK-FaKbm20g0NH4SUnbWd6YANxnu_VIpzOUjmJTfaSS0EV0x1reetrYojcvLo3eT0a3ZY-imgceMI0aUZe961gjWdlPr_aCuW9atKqIp-fERNTojZ-X6TwwT5oees3wbV74Oq7Ieddh4mZ_fkUzIVON4BgAZGnyGagM-crhrG22cODPb3ac6xPu4fB_8CgwumVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1624935828</pqid></control><display><type>article</type><title>Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Wei, Yu-Jia ; He, Yu-Ming ; Chen, Ming-Cheng ; Hu, Yi-Nan ; He, Yu ; Wu, Dian ; Schneider, Christian ; Kamp, Martin ; Höfling, Sven ; Lu, Chao-Yang ; Pan, Jian-Wei</creator><creatorcontrib>Wei, Yu-Jia ; He, Yu-Ming ; Chen, Ming-Cheng ; Hu, Yi-Nan ; He, Yu ; Wu, Dian ; Schneider, Christian ; Kamp, Martin ; Höfling, Sven ; Lu, Chao-Yang ; Pan, Jian-Wei</creatorcontrib><description>Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong–Ou–Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl503081n</identifier><identifier>PMID: 25357153</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adiabatic flow ; Applied sciences ; Computation ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Fault tolerance ; Interference ; Materials science ; Molecular electronics, nanoelectronics ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Photons ; Physics ; Quantum computing ; Quantum dots ; Qubits (quantum computing) ; Qunatum dots ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors</subject><ispartof>Nano letters, 2014-11, Vol.14 (11), p.6515-6519</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413</citedby><cites>FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29081016$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25357153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Yu-Jia</creatorcontrib><creatorcontrib>He, Yu-Ming</creatorcontrib><creatorcontrib>Chen, Ming-Cheng</creatorcontrib><creatorcontrib>Hu, Yi-Nan</creatorcontrib><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Wu, Dian</creatorcontrib><creatorcontrib>Schneider, Christian</creatorcontrib><creatorcontrib>Kamp, Martin</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Lu, Chao-Yang</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><title>Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong–Ou–Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.</description><subject>Adiabatic flow</subject><subject>Applied sciences</subject><subject>Computation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>Interference</subject><subject>Materials science</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Photons</subject><subject>Physics</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><subject>Qunatum dots</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFEEQhhtRTIwe_APSl0A8bOyPnZnuY0g0BgLGaM5DTX_sdpjpXrt6kPwI_7O9ZLO5CJ6qqHp4Cuol5D1np5wJ_imODZNM8fiCHPJGskWrtXi579XygLxBvGeMadmw1-RANLLp6vaQ_LlwxeUpxIAlGArR0ts0zFjopYsuQwkp0uTpjxBXo6M361RSROpzmig8Tb_PEMs80YtU6O9Q1lTr0-aYXkW7tcbVHHANQxhDeaB3WAf0zAYYYHvxFjbB0htAhJV7S155GNG929Ujcvfl88_zr4vrb5dX52fXC1hyWRZOK-FaKbm20g0NH4SUnbWd6YANxnu_VIpzOUjmJTfaSS0EV0x1reetrYojcvLo3eT0a3ZY-imgceMI0aUZe961gjWdlPr_aCuW9atKqIp-fERNTojZ-X6TwwT5oees3wbV74Oq7Ieddh4mZ_fkUzIVON4BgAZGnyGagM-crhrG22cODPb3ac6xPu4fB_8CgwumVA</recordid><startdate>20141112</startdate><enddate>20141112</enddate><creator>Wei, Yu-Jia</creator><creator>He, Yu-Ming</creator><creator>Chen, Ming-Cheng</creator><creator>Hu, Yi-Nan</creator><creator>He, Yu</creator><creator>Wu, Dian</creator><creator>Schneider, Christian</creator><creator>Kamp, Martin</creator><creator>Höfling, Sven</creator><creator>Lu, Chao-Yang</creator><creator>Pan, Jian-Wei</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141112</creationdate><title>Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage</title><author>Wei, Yu-Jia ; He, Yu-Ming ; Chen, Ming-Cheng ; Hu, Yi-Nan ; He, Yu ; Wu, Dian ; Schneider, Christian ; Kamp, Martin ; Höfling, Sven ; Lu, Chao-Yang ; Pan, Jian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adiabatic flow</topic><topic>Applied sciences</topic><topic>Computation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>Interference</topic><topic>Materials science</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Photons</topic><topic>Physics</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><topic>Qunatum dots</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yu-Jia</creatorcontrib><creatorcontrib>He, Yu-Ming</creatorcontrib><creatorcontrib>Chen, Ming-Cheng</creatorcontrib><creatorcontrib>Hu, Yi-Nan</creatorcontrib><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Wu, Dian</creatorcontrib><creatorcontrib>Schneider, Christian</creatorcontrib><creatorcontrib>Kamp, Martin</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Lu, Chao-Yang</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yu-Jia</au><au>He, Yu-Ming</au><au>Chen, Ming-Cheng</au><au>Hu, Yi-Nan</au><au>He, Yu</au><au>Wu, Dian</au><au>Schneider, Christian</au><au>Kamp, Martin</au><au>Höfling, Sven</au><au>Lu, Chao-Yang</au><au>Pan, Jian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-11-12</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>6515</spage><epage>6519</epage><pages>6515-6519</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong–Ou–Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25357153</pmid><doi>10.1021/nl503081n</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2014-11, Vol.14 (11), p.6515-6519 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762057339 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Adiabatic flow Applied sciences Computation Cross-disciplinary physics: materials science rheology Electronics Exact sciences and technology Fault tolerance Interference Materials science Molecular electronics, nanoelectronics Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Photons Physics Quantum computing Quantum dots Qubits (quantum computing) Qunatum dots Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors |
title | Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20and%20Robust%20Generation%20of%20Single%20Photons%20from%20a%20Single%20Quantum%20Dot%20with%2099.5%25%20Indistinguishability%20Using%20Adiabatic%20Rapid%20Passage&rft.jtitle=Nano%20letters&rft.au=Wei,%20Yu-Jia&rft.date=2014-11-12&rft.volume=14&rft.issue=11&rft.spage=6515&rft.epage=6519&rft.pages=6515-6519&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl503081n&rft_dat=%3Cproquest_cross%3E1624935828%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1624935828&rft_id=info:pmid/25357153&rfr_iscdi=true |