Loading…

Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage

Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here,...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2014-11, Vol.14 (11), p.6515-6519
Main Authors: Wei, Yu-Jia, He, Yu-Ming, Chen, Ming-Cheng, Hu, Yi-Nan, He, Yu, Wu, Dian, Schneider, Christian, Kamp, Martin, Höfling, Sven, Lu, Chao-Yang, Pan, Jian-Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413
cites cdi_FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413
container_end_page 6519
container_issue 11
container_start_page 6515
container_title Nano letters
container_volume 14
creator Wei, Yu-Jia
He, Yu-Ming
Chen, Ming-Cheng
Hu, Yi-Nan
He, Yu
Wu, Dian
Schneider, Christian
Kamp, Martin
Höfling, Sven
Lu, Chao-Yang
Pan, Jian-Wei
description Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong–Ou–Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.
doi_str_mv 10.1021/nl503081n
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762057339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1624935828</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhtRTIwe_APSl0A8bOyPnZnuY0g0BgLGaM5DTX_sdpjpXrt6kPwI_7O9ZLO5CJ6qqHp4Cuol5D1np5wJ_imODZNM8fiCHPJGskWrtXi579XygLxBvGeMadmw1-RANLLp6vaQ_LlwxeUpxIAlGArR0ts0zFjopYsuQwkp0uTpjxBXo6M361RSROpzmig8Tb_PEMs80YtU6O9Q1lTr0-aYXkW7tcbVHHANQxhDeaB3WAf0zAYYYHvxFjbB0htAhJV7S155GNG929Ujcvfl88_zr4vrb5dX52fXC1hyWRZOK-FaKbm20g0NH4SUnbWd6YANxnu_VIpzOUjmJTfaSS0EV0x1reetrYojcvLo3eT0a3ZY-imgceMI0aUZe961gjWdlPr_aCuW9atKqIp-fERNTojZ-X6TwwT5oees3wbV74Oq7Ieddh4mZ_fkUzIVON4BgAZGnyGagM-crhrG22cODPb3ac6xPu4fB_8CgwumVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1624935828</pqid></control><display><type>article</type><title>Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wei, Yu-Jia ; He, Yu-Ming ; Chen, Ming-Cheng ; Hu, Yi-Nan ; He, Yu ; Wu, Dian ; Schneider, Christian ; Kamp, Martin ; Höfling, Sven ; Lu, Chao-Yang ; Pan, Jian-Wei</creator><creatorcontrib>Wei, Yu-Jia ; He, Yu-Ming ; Chen, Ming-Cheng ; Hu, Yi-Nan ; He, Yu ; Wu, Dian ; Schneider, Christian ; Kamp, Martin ; Höfling, Sven ; Lu, Chao-Yang ; Pan, Jian-Wei</creatorcontrib><description>Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong–Ou–Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl503081n</identifier><identifier>PMID: 25357153</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adiabatic flow ; Applied sciences ; Computation ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Fault tolerance ; Interference ; Materials science ; Molecular electronics, nanoelectronics ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Photons ; Physics ; Quantum computing ; Quantum dots ; Qubits (quantum computing) ; Qunatum dots ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors</subject><ispartof>Nano letters, 2014-11, Vol.14 (11), p.6515-6519</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413</citedby><cites>FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29081016$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25357153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Yu-Jia</creatorcontrib><creatorcontrib>He, Yu-Ming</creatorcontrib><creatorcontrib>Chen, Ming-Cheng</creatorcontrib><creatorcontrib>Hu, Yi-Nan</creatorcontrib><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Wu, Dian</creatorcontrib><creatorcontrib>Schneider, Christian</creatorcontrib><creatorcontrib>Kamp, Martin</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Lu, Chao-Yang</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><title>Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong–Ou–Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.</description><subject>Adiabatic flow</subject><subject>Applied sciences</subject><subject>Computation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>Interference</subject><subject>Materials science</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Photons</subject><subject>Physics</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><subject>Qunatum dots</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFEEQhhtRTIwe_APSl0A8bOyPnZnuY0g0BgLGaM5DTX_sdpjpXrt6kPwI_7O9ZLO5CJ6qqHp4Cuol5D1np5wJ_imODZNM8fiCHPJGskWrtXi579XygLxBvGeMadmw1-RANLLp6vaQ_LlwxeUpxIAlGArR0ts0zFjopYsuQwkp0uTpjxBXo6M361RSROpzmig8Tb_PEMs80YtU6O9Q1lTr0-aYXkW7tcbVHHANQxhDeaB3WAf0zAYYYHvxFjbB0htAhJV7S155GNG929Ujcvfl88_zr4vrb5dX52fXC1hyWRZOK-FaKbm20g0NH4SUnbWd6YANxnu_VIpzOUjmJTfaSS0EV0x1reetrYojcvLo3eT0a3ZY-imgceMI0aUZe961gjWdlPr_aCuW9atKqIp-fERNTojZ-X6TwwT5oees3wbV74Oq7Ieddh4mZ_fkUzIVON4BgAZGnyGagM-crhrG22cODPb3ac6xPu4fB_8CgwumVA</recordid><startdate>20141112</startdate><enddate>20141112</enddate><creator>Wei, Yu-Jia</creator><creator>He, Yu-Ming</creator><creator>Chen, Ming-Cheng</creator><creator>Hu, Yi-Nan</creator><creator>He, Yu</creator><creator>Wu, Dian</creator><creator>Schneider, Christian</creator><creator>Kamp, Martin</creator><creator>Höfling, Sven</creator><creator>Lu, Chao-Yang</creator><creator>Pan, Jian-Wei</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141112</creationdate><title>Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage</title><author>Wei, Yu-Jia ; He, Yu-Ming ; Chen, Ming-Cheng ; Hu, Yi-Nan ; He, Yu ; Wu, Dian ; Schneider, Christian ; Kamp, Martin ; Höfling, Sven ; Lu, Chao-Yang ; Pan, Jian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adiabatic flow</topic><topic>Applied sciences</topic><topic>Computation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>Interference</topic><topic>Materials science</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Photons</topic><topic>Physics</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><topic>Qunatum dots</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yu-Jia</creatorcontrib><creatorcontrib>He, Yu-Ming</creatorcontrib><creatorcontrib>Chen, Ming-Cheng</creatorcontrib><creatorcontrib>Hu, Yi-Nan</creatorcontrib><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Wu, Dian</creatorcontrib><creatorcontrib>Schneider, Christian</creatorcontrib><creatorcontrib>Kamp, Martin</creatorcontrib><creatorcontrib>Höfling, Sven</creatorcontrib><creatorcontrib>Lu, Chao-Yang</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yu-Jia</au><au>He, Yu-Ming</au><au>Chen, Ming-Cheng</au><au>Hu, Yi-Nan</au><au>He, Yu</au><au>Wu, Dian</au><au>Schneider, Christian</au><au>Kamp, Martin</au><au>Höfling, Sven</au><au>Lu, Chao-Yang</au><au>Pan, Jian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-11-12</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>6515</spage><epage>6519</epage><pages>6515-6519</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong–Ou–Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25357153</pmid><doi>10.1021/nl503081n</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2014-11, Vol.14 (11), p.6515-6519
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762057339
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Adiabatic flow
Applied sciences
Computation
Cross-disciplinary physics: materials science
rheology
Electronics
Exact sciences and technology
Fault tolerance
Interference
Materials science
Molecular electronics, nanoelectronics
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Photons
Physics
Quantum computing
Quantum dots
Qubits (quantum computing)
Qunatum dots
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
title Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20and%20Robust%20Generation%20of%20Single%20Photons%20from%20a%20Single%20Quantum%20Dot%20with%2099.5%25%20Indistinguishability%20Using%20Adiabatic%20Rapid%20Passage&rft.jtitle=Nano%20letters&rft.au=Wei,%20Yu-Jia&rft.date=2014-11-12&rft.volume=14&rft.issue=11&rft.spage=6515&rft.epage=6519&rft.pages=6515-6519&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl503081n&rft_dat=%3Cproquest_cross%3E1624935828%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a413t-e982e63319d3eb51b2337dd7c7a0bcfff488113b30f31c9e3922180876f16d413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1624935828&rft_id=info:pmid/25357153&rfr_iscdi=true