Loading…

Local Heat Activation of Single Myosins Based on Optical Trapping of Gold Nanoparticles

Myosin is a mechano-enzyme that hydrolyzes ATP in order to move unidirectionally along actin filaments. Here we show by single molecule imaging that myosin V motion can be activated by local heat. We constructed a dark-field microscopy that included optical tweezers to monitor 80 nm gold nanoparticl...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2015-04, Vol.15 (4), p.2456-2461
Main Authors: Iwaki, Mitsuhiro, Iwane, Atsuko H, Ikezaki, Keigo, Yanagida, Toshio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Myosin is a mechano-enzyme that hydrolyzes ATP in order to move unidirectionally along actin filaments. Here we show by single molecule imaging that myosin V motion can be activated by local heat. We constructed a dark-field microscopy that included optical tweezers to monitor 80 nm gold nanoparticles (GNP) bound to single myosin V molecules with nanometer and submillisecond accuracy. We observed 34 nm processive steps along actin filaments like those seen when using 200 nm polystyrene beads (PB) but dwell times (ATPase activity) that were 4.5 times faster. Further, by using DNA nanotechnology (DNA origami) and myosin V as a nanometric thermometer, the temperature gradient surrounding optically trapped GNP could be estimated with nanometer accuracy. We propose our single molecule measurement system should advance quantitative analysis of the thermal control of biological and artificial systems like nanoscale thermal ratchet motors.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl5049059