Loading…
Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates
The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and poly...
Saved in:
Published in: | ACS nano 2015-07, Vol.9 (7), p.7164-7174 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473 |
---|---|
cites | cdi_FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473 |
container_end_page | 7174 |
container_issue | 7 |
container_start_page | 7164 |
container_title | ACS nano |
container_volume | 9 |
creator | Zhang, Guangzu Zhang, Xiaoshan Yang, Tiannan Li, Qi Chen, Long-Qing Jiang, Shenglin Wang, Qing |
description | The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications. |
doi_str_mv | 10.1021/acsnano.5b03371 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762063332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762063332</sourcerecordid><originalsourceid>FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUwsyGPSCitHSdxOkLVAlIFCFqJLbo4Z5QqiYudDP0F_G3cD7ox-Xx-7pXvIeSasyFnIR-Bcg00ZhjnTAjJT0ifj0USsDT5PD3WMe-RC-dWjMUylck56YUJF2Ea8T75mZjKOAcVfTemDhZYr9FC21mk0wpVa42CythS0anW_k7Lhs7QWoO7V99_M9WmRktf_D-UqdfGlS06unRl87VrutZ2aptY0AewZVfTDx_btNtqUbbQgOcvyZmGyuHV4RyQ5Wy6mDwF89fH58n9PAARjttAxbmSTMeCKcYh1DFGSqY6jrg3UMQijSKEcVSoMUAYae23zAuupFQcUEVSDMjtPndtzXeHrs3q0imsKmjQdC7jMglZIoQIPTrao8p6QxZ1trZlDXaTcZZt7WcH-9nBvp-4OYR3eY3Fkf_T7YG7PeAns5XpbON3_TfuF_TalJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762063332</pqid></control><display><type>article</type><title>Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Guangzu ; Zhang, Xiaoshan ; Yang, Tiannan ; Li, Qi ; Chen, Long-Qing ; Jiang, Shenglin ; Wang, Qing</creator><creatorcontrib>Zhang, Guangzu ; Zhang, Xiaoshan ; Yang, Tiannan ; Li, Qi ; Chen, Long-Qing ; Jiang, Shenglin ; Wang, Qing</creatorcontrib><description>The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b03371</identifier><identifier>PMID: 26132841</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Barium strontium titanates ; Ceramics ; Cooling ; Ferroelectric materials ; Ferroelectricity ; Nanocomposites ; Nanostructure ; Polarization</subject><ispartof>ACS nano, 2015-07, Vol.9 (7), p.7164-7174</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473</citedby><cites>FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26132841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guangzu</creatorcontrib><creatorcontrib>Zhang, Xiaoshan</creatorcontrib><creatorcontrib>Yang, Tiannan</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Jiang, Shenglin</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><title>Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.</description><subject>Barium strontium titanates</subject><subject>Ceramics</subject><subject>Cooling</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Polarization</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUwsyGPSCitHSdxOkLVAlIFCFqJLbo4Z5QqiYudDP0F_G3cD7ox-Xx-7pXvIeSasyFnIR-Bcg00ZhjnTAjJT0ifj0USsDT5PD3WMe-RC-dWjMUylck56YUJF2Ea8T75mZjKOAcVfTemDhZYr9FC21mk0wpVa42CythS0anW_k7Lhs7QWoO7V99_M9WmRktf_D-UqdfGlS06unRl87VrutZ2aptY0AewZVfTDx_btNtqUbbQgOcvyZmGyuHV4RyQ5Wy6mDwF89fH58n9PAARjttAxbmSTMeCKcYh1DFGSqY6jrg3UMQijSKEcVSoMUAYae23zAuupFQcUEVSDMjtPndtzXeHrs3q0imsKmjQdC7jMglZIoQIPTrao8p6QxZ1trZlDXaTcZZt7WcH-9nBvp-4OYR3eY3Fkf_T7YG7PeAns5XpbON3_TfuF_TalJE</recordid><startdate>20150728</startdate><enddate>20150728</enddate><creator>Zhang, Guangzu</creator><creator>Zhang, Xiaoshan</creator><creator>Yang, Tiannan</creator><creator>Li, Qi</creator><creator>Chen, Long-Qing</creator><creator>Jiang, Shenglin</creator><creator>Wang, Qing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150728</creationdate><title>Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates</title><author>Zhang, Guangzu ; Zhang, Xiaoshan ; Yang, Tiannan ; Li, Qi ; Chen, Long-Qing ; Jiang, Shenglin ; Wang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Barium strontium titanates</topic><topic>Ceramics</topic><topic>Cooling</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guangzu</creatorcontrib><creatorcontrib>Zhang, Xiaoshan</creatorcontrib><creatorcontrib>Yang, Tiannan</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Jiang, Shenglin</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guangzu</au><au>Zhang, Xiaoshan</au><au>Yang, Tiannan</au><au>Li, Qi</au><au>Chen, Long-Qing</au><au>Jiang, Shenglin</au><au>Wang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-07-28</date><risdate>2015</risdate><volume>9</volume><issue>7</issue><spage>7164</spage><epage>7174</epage><pages>7164-7174</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26132841</pmid><doi>10.1021/acsnano.5b03371</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2015-07, Vol.9 (7), p.7164-7174 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762063332 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Barium strontium titanates Ceramics Cooling Ferroelectric materials Ferroelectricity Nanocomposites Nanostructure Polarization |
title | Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colossal%20Room-Temperature%20Electrocaloric%20Effect%20in%20Ferroelectric%20Polymer%20Nanocomposites%20Using%20Nanostructured%20Barium%20Strontium%20Titanates&rft.jtitle=ACS%20nano&rft.au=Zhang,%20Guangzu&rft.date=2015-07-28&rft.volume=9&rft.issue=7&rft.spage=7164&rft.epage=7174&rft.pages=7164-7174&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b03371&rft_dat=%3Cproquest_cross%3E1762063332%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762063332&rft_id=info:pmid/26132841&rfr_iscdi=true |