Loading…

Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates

The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and poly...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2015-07, Vol.9 (7), p.7164-7174
Main Authors: Zhang, Guangzu, Zhang, Xiaoshan, Yang, Tiannan, Li, Qi, Chen, Long-Qing, Jiang, Shenglin, Wang, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473
cites cdi_FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473
container_end_page 7174
container_issue 7
container_start_page 7164
container_title ACS nano
container_volume 9
creator Zhang, Guangzu
Zhang, Xiaoshan
Yang, Tiannan
Li, Qi
Chen, Long-Qing
Jiang, Shenglin
Wang, Qing
description The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.
doi_str_mv 10.1021/acsnano.5b03371
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762063332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762063332</sourcerecordid><originalsourceid>FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUwsyGPSCitHSdxOkLVAlIFCFqJLbo4Z5QqiYudDP0F_G3cD7ox-Xx-7pXvIeSasyFnIR-Bcg00ZhjnTAjJT0ifj0USsDT5PD3WMe-RC-dWjMUylck56YUJF2Ea8T75mZjKOAcVfTemDhZYr9FC21mk0wpVa42CythS0anW_k7Lhs7QWoO7V99_M9WmRktf_D-UqdfGlS06unRl87VrutZ2aptY0AewZVfTDx_btNtqUbbQgOcvyZmGyuHV4RyQ5Wy6mDwF89fH58n9PAARjttAxbmSTMeCKcYh1DFGSqY6jrg3UMQijSKEcVSoMUAYae23zAuupFQcUEVSDMjtPndtzXeHrs3q0imsKmjQdC7jMglZIoQIPTrao8p6QxZ1trZlDXaTcZZt7WcH-9nBvp-4OYR3eY3Fkf_T7YG7PeAns5XpbON3_TfuF_TalJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762063332</pqid></control><display><type>article</type><title>Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Guangzu ; Zhang, Xiaoshan ; Yang, Tiannan ; Li, Qi ; Chen, Long-Qing ; Jiang, Shenglin ; Wang, Qing</creator><creatorcontrib>Zhang, Guangzu ; Zhang, Xiaoshan ; Yang, Tiannan ; Li, Qi ; Chen, Long-Qing ; Jiang, Shenglin ; Wang, Qing</creatorcontrib><description>The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b03371</identifier><identifier>PMID: 26132841</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Barium strontium titanates ; Ceramics ; Cooling ; Ferroelectric materials ; Ferroelectricity ; Nanocomposites ; Nanostructure ; Polarization</subject><ispartof>ACS nano, 2015-07, Vol.9 (7), p.7164-7174</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473</citedby><cites>FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26132841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guangzu</creatorcontrib><creatorcontrib>Zhang, Xiaoshan</creatorcontrib><creatorcontrib>Yang, Tiannan</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Jiang, Shenglin</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><title>Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.</description><subject>Barium strontium titanates</subject><subject>Ceramics</subject><subject>Cooling</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Polarization</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUwsyGPSCitHSdxOkLVAlIFCFqJLbo4Z5QqiYudDP0F_G3cD7ox-Xx-7pXvIeSasyFnIR-Bcg00ZhjnTAjJT0ifj0USsDT5PD3WMe-RC-dWjMUylck56YUJF2Ea8T75mZjKOAcVfTemDhZYr9FC21mk0wpVa42CythS0anW_k7Lhs7QWoO7V99_M9WmRktf_D-UqdfGlS06unRl87VrutZ2aptY0AewZVfTDx_btNtqUbbQgOcvyZmGyuHV4RyQ5Wy6mDwF89fH58n9PAARjttAxbmSTMeCKcYh1DFGSqY6jrg3UMQijSKEcVSoMUAYae23zAuupFQcUEVSDMjtPndtzXeHrs3q0imsKmjQdC7jMglZIoQIPTrao8p6QxZ1trZlDXaTcZZt7WcH-9nBvp-4OYR3eY3Fkf_T7YG7PeAns5XpbON3_TfuF_TalJE</recordid><startdate>20150728</startdate><enddate>20150728</enddate><creator>Zhang, Guangzu</creator><creator>Zhang, Xiaoshan</creator><creator>Yang, Tiannan</creator><creator>Li, Qi</creator><creator>Chen, Long-Qing</creator><creator>Jiang, Shenglin</creator><creator>Wang, Qing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150728</creationdate><title>Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates</title><author>Zhang, Guangzu ; Zhang, Xiaoshan ; Yang, Tiannan ; Li, Qi ; Chen, Long-Qing ; Jiang, Shenglin ; Wang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Barium strontium titanates</topic><topic>Ceramics</topic><topic>Cooling</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guangzu</creatorcontrib><creatorcontrib>Zhang, Xiaoshan</creatorcontrib><creatorcontrib>Yang, Tiannan</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Jiang, Shenglin</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guangzu</au><au>Zhang, Xiaoshan</au><au>Yang, Tiannan</au><au>Li, Qi</au><au>Chen, Long-Qing</au><au>Jiang, Shenglin</au><au>Wang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-07-28</date><risdate>2015</risdate><volume>9</volume><issue>7</issue><spage>7164</spage><epage>7174</epage><pages>7164-7174</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26132841</pmid><doi>10.1021/acsnano.5b03371</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2015-07, Vol.9 (7), p.7164-7174
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762063332
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Barium strontium titanates
Ceramics
Cooling
Ferroelectric materials
Ferroelectricity
Nanocomposites
Nanostructure
Polarization
title Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colossal%20Room-Temperature%20Electrocaloric%20Effect%20in%20Ferroelectric%20Polymer%20Nanocomposites%20Using%20Nanostructured%20Barium%20Strontium%20Titanates&rft.jtitle=ACS%20nano&rft.au=Zhang,%20Guangzu&rft.date=2015-07-28&rft.volume=9&rft.issue=7&rft.spage=7164&rft.epage=7174&rft.pages=7164-7174&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b03371&rft_dat=%3Cproquest_cross%3E1762063332%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a329t-c5bc70f530c01a2f5e4c78f5415b0d53844ea94dc9aa24ff328bd1c77c1aec473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762063332&rft_id=info:pmid/26132841&rfr_iscdi=true