Loading…
A Mesoporous Silica Biomaterial for Dental Biomimetic Crystallization
The loss of overlying enamel or cementum exposes dentinal tubules and increases the risk of several dental diseases, such as dentin hypersensitivity (causing sharp pain and anxiety), caries, and pulp inflammation. This paper presents a fast-reacting, more reliable and biocompatible biomaterial that...
Saved in:
Published in: | ACS nano 2014-12, Vol.8 (12), p.12502-12513 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a315t-c2ed8569d72f9c48201581e65148cff19f46e0625fc8e7aa934cbf433e977e153 |
---|---|
cites | cdi_FETCH-LOGICAL-a315t-c2ed8569d72f9c48201581e65148cff19f46e0625fc8e7aa934cbf433e977e153 |
container_end_page | 12513 |
container_issue | 12 |
container_start_page | 12502 |
container_title | ACS nano |
container_volume | 8 |
creator | Chiang, Yu-Chih Lin, Hong-Ping Chang, Hao-Hueng Cheng, Ya-Wen Tang, Hsin-Yen Yen, Wei-Ching Lin, Po-Yen Chang, Kei-Wen Lin, Chun-Pin |
description | The loss of overlying enamel or cementum exposes dentinal tubules and increases the risk of several dental diseases, such as dentin hypersensitivity (causing sharp pain and anxiety), caries, and pulp inflammation. This paper presents a fast-reacting, more reliable and biocompatible biomaterial that effectively occludes exposed dentinal tubules by forming a biomimetic crystalline dentin barrier. To generate this biomaterial, a gelatin-templated mesoporous silica biomaterial (CaCO3@mesoporous silica, CCMS) containing nanosized calcium carbonate particles is mixed with 30% H3PO4 at a 1/1 molar ratio of Ca/P (denoted as CCMS-HP), which enables Ca2+ and PO4 3–/HPO4 2– ions to permeate the dentinal tubules and form dicalcium phosphate dihydrate (DCPD), tricalcium phosphate (TCP) or hydroxyapatite (HAp) crystals at a depth of approximately 40 μm (sub-μ-CT and nano-SEM/EDS examinations). In vitro biocompatibility tests (WST-1 and lactate dehydrogenase) and ALP assays show high cell viability and mineralization ability in a transwell dentin disc model treated with CCMS-HP (p < 0.05). The in vivo efficacy and biocompatibility analyses of the biomaterial in an animal model reveal significant crystal growth (DCPD, TCP or HAp-like) and no pulp irritation after 70 days (p < 0.05). The developed CCMS-HP holds great promise for treating exposed dentin by growing biomimetic crystals within dentinal tubules. These findings demonstrate that the mesoporous silica biomaterials presented here have great potential for serving as both a catalyst and carrier in the repair or regeneration of dental hard tissue. |
doi_str_mv | 10.1021/nn5053487 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762065003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762065003</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-c2ed8569d72f9c48201581e65148cff19f46e0625fc8e7aa934cbf433e977e153</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMotlYX_gGZjaCL0WQyecyyrfUBFRcquAtpegMpM5OazCzqrzeltStX93D4OJx7ELok-I7ggty3LcOMllIcoSGpKM-x5F_HB83IAJ3FuMKYCSn4KRoUrJQFI3SIZuPsFaJf--D7mL272hmdTZxvdAfB6TqzPmQP0HZJbm3XQOdMNg2bmKza_ejO-fYcnVhdR7jY3xH6fJx9TJ_z-dvTy3Q8zzUlrMtNAUvJeLUUha1MqoAJkwQ4I6U01pLKlhwwL5g1EoTWFS3NwpaUQiUEEEZH6GaXuw7-u4fYqcZFA3WtW0j9FRG8wJxhTBN6u0NN8DEGsGodXKPDRhGstqupw2qJvdrH9osGlgfyb6YEXO8AbaJa-T606ct_gn4Boy9yYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762065003</pqid></control><display><type>article</type><title>A Mesoporous Silica Biomaterial for Dental Biomimetic Crystallization</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Chiang, Yu-Chih ; Lin, Hong-Ping ; Chang, Hao-Hueng ; Cheng, Ya-Wen ; Tang, Hsin-Yen ; Yen, Wei-Ching ; Lin, Po-Yen ; Chang, Kei-Wen ; Lin, Chun-Pin</creator><creatorcontrib>Chiang, Yu-Chih ; Lin, Hong-Ping ; Chang, Hao-Hueng ; Cheng, Ya-Wen ; Tang, Hsin-Yen ; Yen, Wei-Ching ; Lin, Po-Yen ; Chang, Kei-Wen ; Lin, Chun-Pin</creatorcontrib><description>The loss of overlying enamel or cementum exposes dentinal tubules and increases the risk of several dental diseases, such as dentin hypersensitivity (causing sharp pain and anxiety), caries, and pulp inflammation. This paper presents a fast-reacting, more reliable and biocompatible biomaterial that effectively occludes exposed dentinal tubules by forming a biomimetic crystalline dentin barrier. To generate this biomaterial, a gelatin-templated mesoporous silica biomaterial (CaCO3@mesoporous silica, CCMS) containing nanosized calcium carbonate particles is mixed with 30% H3PO4 at a 1/1 molar ratio of Ca/P (denoted as CCMS-HP), which enables Ca2+ and PO4 3–/HPO4 2– ions to permeate the dentinal tubules and form dicalcium phosphate dihydrate (DCPD), tricalcium phosphate (TCP) or hydroxyapatite (HAp) crystals at a depth of approximately 40 μm (sub-μ-CT and nano-SEM/EDS examinations). In vitro biocompatibility tests (WST-1 and lactate dehydrogenase) and ALP assays show high cell viability and mineralization ability in a transwell dentin disc model treated with CCMS-HP (p < 0.05). The in vivo efficacy and biocompatibility analyses of the biomaterial in an animal model reveal significant crystal growth (DCPD, TCP or HAp-like) and no pulp irritation after 70 days (p < 0.05). The developed CCMS-HP holds great promise for treating exposed dentin by growing biomimetic crystals within dentinal tubules. These findings demonstrate that the mesoporous silica biomaterials presented here have great potential for serving as both a catalyst and carrier in the repair or regeneration of dental hard tissue.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn5053487</identifier><identifier>PMID: 25482513</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biocompatibility ; Biomaterials ; Biomedical materials ; Biomimetic Materials - chemistry ; Biomimetic Materials - pharmacology ; Biomimetic Materials - toxicity ; Biomimetics ; Calcium Carbonate - chemistry ; Cell Survival - drug effects ; Crystallization ; Dental Pulp - drug effects ; Dentin ; Dentin - drug effects ; Dogs ; Gelatin - chemistry ; Nanostructure ; Phosphoric Acids - chemistry ; Porosity ; Silicon dioxide ; Silicon Dioxide - chemistry ; TCP (protocol)</subject><ispartof>ACS nano, 2014-12, Vol.8 (12), p.12502-12513</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-c2ed8569d72f9c48201581e65148cff19f46e0625fc8e7aa934cbf433e977e153</citedby><cites>FETCH-LOGICAL-a315t-c2ed8569d72f9c48201581e65148cff19f46e0625fc8e7aa934cbf433e977e153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25482513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiang, Yu-Chih</creatorcontrib><creatorcontrib>Lin, Hong-Ping</creatorcontrib><creatorcontrib>Chang, Hao-Hueng</creatorcontrib><creatorcontrib>Cheng, Ya-Wen</creatorcontrib><creatorcontrib>Tang, Hsin-Yen</creatorcontrib><creatorcontrib>Yen, Wei-Ching</creatorcontrib><creatorcontrib>Lin, Po-Yen</creatorcontrib><creatorcontrib>Chang, Kei-Wen</creatorcontrib><creatorcontrib>Lin, Chun-Pin</creatorcontrib><title>A Mesoporous Silica Biomaterial for Dental Biomimetic Crystallization</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The loss of overlying enamel or cementum exposes dentinal tubules and increases the risk of several dental diseases, such as dentin hypersensitivity (causing sharp pain and anxiety), caries, and pulp inflammation. This paper presents a fast-reacting, more reliable and biocompatible biomaterial that effectively occludes exposed dentinal tubules by forming a biomimetic crystalline dentin barrier. To generate this biomaterial, a gelatin-templated mesoporous silica biomaterial (CaCO3@mesoporous silica, CCMS) containing nanosized calcium carbonate particles is mixed with 30% H3PO4 at a 1/1 molar ratio of Ca/P (denoted as CCMS-HP), which enables Ca2+ and PO4 3–/HPO4 2– ions to permeate the dentinal tubules and form dicalcium phosphate dihydrate (DCPD), tricalcium phosphate (TCP) or hydroxyapatite (HAp) crystals at a depth of approximately 40 μm (sub-μ-CT and nano-SEM/EDS examinations). In vitro biocompatibility tests (WST-1 and lactate dehydrogenase) and ALP assays show high cell viability and mineralization ability in a transwell dentin disc model treated with CCMS-HP (p < 0.05). The in vivo efficacy and biocompatibility analyses of the biomaterial in an animal model reveal significant crystal growth (DCPD, TCP or HAp-like) and no pulp irritation after 70 days (p < 0.05). The developed CCMS-HP holds great promise for treating exposed dentin by growing biomimetic crystals within dentinal tubules. These findings demonstrate that the mesoporous silica biomaterials presented here have great potential for serving as both a catalyst and carrier in the repair or regeneration of dental hard tissue.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - pharmacology</subject><subject>Biomimetic Materials - toxicity</subject><subject>Biomimetics</subject><subject>Calcium Carbonate - chemistry</subject><subject>Cell Survival - drug effects</subject><subject>Crystallization</subject><subject>Dental Pulp - drug effects</subject><subject>Dentin</subject><subject>Dentin - drug effects</subject><subject>Dogs</subject><subject>Gelatin - chemistry</subject><subject>Nanostructure</subject><subject>Phosphoric Acids - chemistry</subject><subject>Porosity</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>TCP (protocol)</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMotlYX_gGZjaCL0WQyecyyrfUBFRcquAtpegMpM5OazCzqrzeltStX93D4OJx7ELok-I7ggty3LcOMllIcoSGpKM-x5F_HB83IAJ3FuMKYCSn4KRoUrJQFI3SIZuPsFaJf--D7mL272hmdTZxvdAfB6TqzPmQP0HZJbm3XQOdMNg2bmKza_ejO-fYcnVhdR7jY3xH6fJx9TJ_z-dvTy3Q8zzUlrMtNAUvJeLUUha1MqoAJkwQ4I6U01pLKlhwwL5g1EoTWFS3NwpaUQiUEEEZH6GaXuw7-u4fYqcZFA3WtW0j9FRG8wJxhTBN6u0NN8DEGsGodXKPDRhGstqupw2qJvdrH9osGlgfyb6YEXO8AbaJa-T606ct_gn4Boy9yYw</recordid><startdate>20141223</startdate><enddate>20141223</enddate><creator>Chiang, Yu-Chih</creator><creator>Lin, Hong-Ping</creator><creator>Chang, Hao-Hueng</creator><creator>Cheng, Ya-Wen</creator><creator>Tang, Hsin-Yen</creator><creator>Yen, Wei-Ching</creator><creator>Lin, Po-Yen</creator><creator>Chang, Kei-Wen</creator><creator>Lin, Chun-Pin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141223</creationdate><title>A Mesoporous Silica Biomaterial for Dental Biomimetic Crystallization</title><author>Chiang, Yu-Chih ; Lin, Hong-Ping ; Chang, Hao-Hueng ; Cheng, Ya-Wen ; Tang, Hsin-Yen ; Yen, Wei-Ching ; Lin, Po-Yen ; Chang, Kei-Wen ; Lin, Chun-Pin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-c2ed8569d72f9c48201581e65148cff19f46e0625fc8e7aa934cbf433e977e153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - pharmacology</topic><topic>Biomimetic Materials - toxicity</topic><topic>Biomimetics</topic><topic>Calcium Carbonate - chemistry</topic><topic>Cell Survival - drug effects</topic><topic>Crystallization</topic><topic>Dental Pulp - drug effects</topic><topic>Dentin</topic><topic>Dentin - drug effects</topic><topic>Dogs</topic><topic>Gelatin - chemistry</topic><topic>Nanostructure</topic><topic>Phosphoric Acids - chemistry</topic><topic>Porosity</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>TCP (protocol)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Yu-Chih</creatorcontrib><creatorcontrib>Lin, Hong-Ping</creatorcontrib><creatorcontrib>Chang, Hao-Hueng</creatorcontrib><creatorcontrib>Cheng, Ya-Wen</creatorcontrib><creatorcontrib>Tang, Hsin-Yen</creatorcontrib><creatorcontrib>Yen, Wei-Ching</creatorcontrib><creatorcontrib>Lin, Po-Yen</creatorcontrib><creatorcontrib>Chang, Kei-Wen</creatorcontrib><creatorcontrib>Lin, Chun-Pin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiang, Yu-Chih</au><au>Lin, Hong-Ping</au><au>Chang, Hao-Hueng</au><au>Cheng, Ya-Wen</au><au>Tang, Hsin-Yen</au><au>Yen, Wei-Ching</au><au>Lin, Po-Yen</au><au>Chang, Kei-Wen</au><au>Lin, Chun-Pin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mesoporous Silica Biomaterial for Dental Biomimetic Crystallization</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-12-23</date><risdate>2014</risdate><volume>8</volume><issue>12</issue><spage>12502</spage><epage>12513</epage><pages>12502-12513</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The loss of overlying enamel or cementum exposes dentinal tubules and increases the risk of several dental diseases, such as dentin hypersensitivity (causing sharp pain and anxiety), caries, and pulp inflammation. This paper presents a fast-reacting, more reliable and biocompatible biomaterial that effectively occludes exposed dentinal tubules by forming a biomimetic crystalline dentin barrier. To generate this biomaterial, a gelatin-templated mesoporous silica biomaterial (CaCO3@mesoporous silica, CCMS) containing nanosized calcium carbonate particles is mixed with 30% H3PO4 at a 1/1 molar ratio of Ca/P (denoted as CCMS-HP), which enables Ca2+ and PO4 3–/HPO4 2– ions to permeate the dentinal tubules and form dicalcium phosphate dihydrate (DCPD), tricalcium phosphate (TCP) or hydroxyapatite (HAp) crystals at a depth of approximately 40 μm (sub-μ-CT and nano-SEM/EDS examinations). In vitro biocompatibility tests (WST-1 and lactate dehydrogenase) and ALP assays show high cell viability and mineralization ability in a transwell dentin disc model treated with CCMS-HP (p < 0.05). The in vivo efficacy and biocompatibility analyses of the biomaterial in an animal model reveal significant crystal growth (DCPD, TCP or HAp-like) and no pulp irritation after 70 days (p < 0.05). The developed CCMS-HP holds great promise for treating exposed dentin by growing biomimetic crystals within dentinal tubules. These findings demonstrate that the mesoporous silica biomaterials presented here have great potential for serving as both a catalyst and carrier in the repair or regeneration of dental hard tissue.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25482513</pmid><doi>10.1021/nn5053487</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2014-12, Vol.8 (12), p.12502-12513 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762065003 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Animals Biocompatibility Biomaterials Biomedical materials Biomimetic Materials - chemistry Biomimetic Materials - pharmacology Biomimetic Materials - toxicity Biomimetics Calcium Carbonate - chemistry Cell Survival - drug effects Crystallization Dental Pulp - drug effects Dentin Dentin - drug effects Dogs Gelatin - chemistry Nanostructure Phosphoric Acids - chemistry Porosity Silicon dioxide Silicon Dioxide - chemistry TCP (protocol) |
title | A Mesoporous Silica Biomaterial for Dental Biomimetic Crystallization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mesoporous%20Silica%20Biomaterial%20for%20Dental%20Biomimetic%20Crystallization&rft.jtitle=ACS%20nano&rft.au=Chiang,%20Yu-Chih&rft.date=2014-12-23&rft.volume=8&rft.issue=12&rft.spage=12502&rft.epage=12513&rft.pages=12502-12513&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn5053487&rft_dat=%3Cproquest_cross%3E1762065003%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-c2ed8569d72f9c48201581e65148cff19f46e0625fc8e7aa934cbf433e977e153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762065003&rft_id=info:pmid/25482513&rfr_iscdi=true |