Loading…

Influence of Molecular Dipole Orientations on Long-Range Exponential Interaction Forces at Hydrophobic Contacts in Aqueous Solutions

Strong and particularly long ranged (>100 nm) interaction forces between apposing hydrophobic lipid monolayers are now well understood in terms of a partial turnover of mobile lipid patches, giving rise to a correlated long-range electrostatic attraction. Here we describe similarly strong long-ra...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2014-10, Vol.8 (10), p.10870-10877
Main Authors: Kristiansen, Kai, Stock, Philipp, Baimpos, Theodoros, Raman, Sangeetha, Harada, Jaye K, Israelachvili, Jacob N, Valtiner, Markus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a383t-33d089a1d9c7c46bce0d88cadbd517152ff1743436a314fe777127d4c4085ebd3
cites cdi_FETCH-LOGICAL-a383t-33d089a1d9c7c46bce0d88cadbd517152ff1743436a314fe777127d4c4085ebd3
container_end_page 10877
container_issue 10
container_start_page 10870
container_title ACS nano
container_volume 8
creator Kristiansen, Kai
Stock, Philipp
Baimpos, Theodoros
Raman, Sangeetha
Harada, Jaye K
Israelachvili, Jacob N
Valtiner, Markus
description Strong and particularly long ranged (>100 nm) interaction forces between apposing hydrophobic lipid monolayers are now well understood in terms of a partial turnover of mobile lipid patches, giving rise to a correlated long-range electrostatic attraction. Here we describe similarly strong long-ranged attractive forces between self-assembled monolayers of carboranethiols, with dipole moments aligned either parallel or perpendicular to the surface, and hydrophobic lipid monolayers deposited on mica. We compare the interaction forces measured at very different length scales using atomic force microscope and surface forces apparatus measurements. Both systems gave a long-ranged exponential attraction with a decay length of 2.0 ± 0.2 nm for dipole alignments perpendicular to the surface. The effect of dipole alignment parallel to the surface is larger than for perpendicular dipoles, likely due to greater lateral correlation of in-plane surface dipoles. The magnitudes and range of the measured interaction forces also depend on the surface area of the probe used: At extended surfaces, dipole alignment parallel to the surface leads to a stronger attraction due to electrostatic correlations of freely rotating surface dipoles and charge patches on the apposing surfaces. In contrast, perpendicular dipoles at extended surfaces, where molecular rotation cannot lead to large dipole correlations, do not depend on the scale of the probe used. Our results may be important to a range of scale-dependent interaction phenomena related to solvent/water structuring on dipolar and hydrophobic surfaces at interfaces.
doi_str_mv 10.1021/nn504687b
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762066689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1618142473</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-33d089a1d9c7c46bce0d88cadbd517152ff1743436a314fe777127d4c4085ebd3</originalsourceid><addsrcrecordid>eNqFkU1LAzEURYMoflQX_gHJRtDFaDLJJJllqa0tVAQ_wN2QSTI6ZZqMyQzYvT_c1GpXgqt34R0Oj3cBOMXoCqMUX1ubIcoEL3fAIc4JS5BgL7vbnOEDcBTCAqGMC872wUGapSJnOT8EnzNbNb2xykBXwTvXGNU30sObuo0Z3vva2E52tbMBOgvnzr4mD9K-Gjj-aJ2Ny1o2cGY746VaY3DivDIByg5OV9q79s2VtYIjFzWqC7C2cPjeG9cH-Oia_tt8DPYq2QRz8jMH4HkyfhpNk_n97Ww0nCeSCNIlhGgkcol1rriirFQGaSGU1KXOMMdZWlWYU0IJkwTTynDOcco1VTT-wJSaDMDFxtt6F28IXbGsgzJNI-36oAJzliLGmMj_RxkWmKaUk4heblDlXQjeVEXr66X0qwKjYt1Pse0nsmc_2r5cGr0lfwuJwPkGkCoUC9d7Gx_yh-gLFguYsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1618142473</pqid></control><display><type>article</type><title>Influence of Molecular Dipole Orientations on Long-Range Exponential Interaction Forces at Hydrophobic Contacts in Aqueous Solutions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kristiansen, Kai ; Stock, Philipp ; Baimpos, Theodoros ; Raman, Sangeetha ; Harada, Jaye K ; Israelachvili, Jacob N ; Valtiner, Markus</creator><creatorcontrib>Kristiansen, Kai ; Stock, Philipp ; Baimpos, Theodoros ; Raman, Sangeetha ; Harada, Jaye K ; Israelachvili, Jacob N ; Valtiner, Markus</creatorcontrib><description>Strong and particularly long ranged (&gt;100 nm) interaction forces between apposing hydrophobic lipid monolayers are now well understood in terms of a partial turnover of mobile lipid patches, giving rise to a correlated long-range electrostatic attraction. Here we describe similarly strong long-ranged attractive forces between self-assembled monolayers of carboranethiols, with dipole moments aligned either parallel or perpendicular to the surface, and hydrophobic lipid monolayers deposited on mica. We compare the interaction forces measured at very different length scales using atomic force microscope and surface forces apparatus measurements. Both systems gave a long-ranged exponential attraction with a decay length of 2.0 ± 0.2 nm for dipole alignments perpendicular to the surface. The effect of dipole alignment parallel to the surface is larger than for perpendicular dipoles, likely due to greater lateral correlation of in-plane surface dipoles. The magnitudes and range of the measured interaction forces also depend on the surface area of the probe used: At extended surfaces, dipole alignment parallel to the surface leads to a stronger attraction due to electrostatic correlations of freely rotating surface dipoles and charge patches on the apposing surfaces. In contrast, perpendicular dipoles at extended surfaces, where molecular rotation cannot lead to large dipole correlations, do not depend on the scale of the probe used. Our results may be important to a range of scale-dependent interaction phenomena related to solvent/water structuring on dipolar and hydrophobic surfaces at interfaces.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn504687b</identifier><identifier>PMID: 25289697</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alignment ; Attraction ; Correlation ; Dipoles ; Electrostatics ; Lipids ; Monolayers ; Self-assembled monolayers</subject><ispartof>ACS nano, 2014-10, Vol.8 (10), p.10870-10877</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-33d089a1d9c7c46bce0d88cadbd517152ff1743436a314fe777127d4c4085ebd3</citedby><cites>FETCH-LOGICAL-a383t-33d089a1d9c7c46bce0d88cadbd517152ff1743436a314fe777127d4c4085ebd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25289697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kristiansen, Kai</creatorcontrib><creatorcontrib>Stock, Philipp</creatorcontrib><creatorcontrib>Baimpos, Theodoros</creatorcontrib><creatorcontrib>Raman, Sangeetha</creatorcontrib><creatorcontrib>Harada, Jaye K</creatorcontrib><creatorcontrib>Israelachvili, Jacob N</creatorcontrib><creatorcontrib>Valtiner, Markus</creatorcontrib><title>Influence of Molecular Dipole Orientations on Long-Range Exponential Interaction Forces at Hydrophobic Contacts in Aqueous Solutions</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Strong and particularly long ranged (&gt;100 nm) interaction forces between apposing hydrophobic lipid monolayers are now well understood in terms of a partial turnover of mobile lipid patches, giving rise to a correlated long-range electrostatic attraction. Here we describe similarly strong long-ranged attractive forces between self-assembled monolayers of carboranethiols, with dipole moments aligned either parallel or perpendicular to the surface, and hydrophobic lipid monolayers deposited on mica. We compare the interaction forces measured at very different length scales using atomic force microscope and surface forces apparatus measurements. Both systems gave a long-ranged exponential attraction with a decay length of 2.0 ± 0.2 nm for dipole alignments perpendicular to the surface. The effect of dipole alignment parallel to the surface is larger than for perpendicular dipoles, likely due to greater lateral correlation of in-plane surface dipoles. The magnitudes and range of the measured interaction forces also depend on the surface area of the probe used: At extended surfaces, dipole alignment parallel to the surface leads to a stronger attraction due to electrostatic correlations of freely rotating surface dipoles and charge patches on the apposing surfaces. In contrast, perpendicular dipoles at extended surfaces, where molecular rotation cannot lead to large dipole correlations, do not depend on the scale of the probe used. Our results may be important to a range of scale-dependent interaction phenomena related to solvent/water structuring on dipolar and hydrophobic surfaces at interfaces.</description><subject>Alignment</subject><subject>Attraction</subject><subject>Correlation</subject><subject>Dipoles</subject><subject>Electrostatics</subject><subject>Lipids</subject><subject>Monolayers</subject><subject>Self-assembled monolayers</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEURYMoflQX_gHJRtDFaDLJJJllqa0tVAQ_wN2QSTI6ZZqMyQzYvT_c1GpXgqt34R0Oj3cBOMXoCqMUX1ubIcoEL3fAIc4JS5BgL7vbnOEDcBTCAqGMC872wUGapSJnOT8EnzNbNb2xykBXwTvXGNU30sObuo0Z3vva2E52tbMBOgvnzr4mD9K-Gjj-aJ2Ny1o2cGY746VaY3DivDIByg5OV9q79s2VtYIjFzWqC7C2cPjeG9cH-Oia_tt8DPYq2QRz8jMH4HkyfhpNk_n97Ww0nCeSCNIlhGgkcol1rriirFQGaSGU1KXOMMdZWlWYU0IJkwTTynDOcco1VTT-wJSaDMDFxtt6F28IXbGsgzJNI-36oAJzliLGmMj_RxkWmKaUk4heblDlXQjeVEXr66X0qwKjYt1Pse0nsmc_2r5cGr0lfwuJwPkGkCoUC9d7Gx_yh-gLFguYsQ</recordid><startdate>20141028</startdate><enddate>20141028</enddate><creator>Kristiansen, Kai</creator><creator>Stock, Philipp</creator><creator>Baimpos, Theodoros</creator><creator>Raman, Sangeetha</creator><creator>Harada, Jaye K</creator><creator>Israelachvili, Jacob N</creator><creator>Valtiner, Markus</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141028</creationdate><title>Influence of Molecular Dipole Orientations on Long-Range Exponential Interaction Forces at Hydrophobic Contacts in Aqueous Solutions</title><author>Kristiansen, Kai ; Stock, Philipp ; Baimpos, Theodoros ; Raman, Sangeetha ; Harada, Jaye K ; Israelachvili, Jacob N ; Valtiner, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-33d089a1d9c7c46bce0d88cadbd517152ff1743436a314fe777127d4c4085ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alignment</topic><topic>Attraction</topic><topic>Correlation</topic><topic>Dipoles</topic><topic>Electrostatics</topic><topic>Lipids</topic><topic>Monolayers</topic><topic>Self-assembled monolayers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kristiansen, Kai</creatorcontrib><creatorcontrib>Stock, Philipp</creatorcontrib><creatorcontrib>Baimpos, Theodoros</creatorcontrib><creatorcontrib>Raman, Sangeetha</creatorcontrib><creatorcontrib>Harada, Jaye K</creatorcontrib><creatorcontrib>Israelachvili, Jacob N</creatorcontrib><creatorcontrib>Valtiner, Markus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kristiansen, Kai</au><au>Stock, Philipp</au><au>Baimpos, Theodoros</au><au>Raman, Sangeetha</au><au>Harada, Jaye K</au><au>Israelachvili, Jacob N</au><au>Valtiner, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Molecular Dipole Orientations on Long-Range Exponential Interaction Forces at Hydrophobic Contacts in Aqueous Solutions</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-10-28</date><risdate>2014</risdate><volume>8</volume><issue>10</issue><spage>10870</spage><epage>10877</epage><pages>10870-10877</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Strong and particularly long ranged (&gt;100 nm) interaction forces between apposing hydrophobic lipid monolayers are now well understood in terms of a partial turnover of mobile lipid patches, giving rise to a correlated long-range electrostatic attraction. Here we describe similarly strong long-ranged attractive forces between self-assembled monolayers of carboranethiols, with dipole moments aligned either parallel or perpendicular to the surface, and hydrophobic lipid monolayers deposited on mica. We compare the interaction forces measured at very different length scales using atomic force microscope and surface forces apparatus measurements. Both systems gave a long-ranged exponential attraction with a decay length of 2.0 ± 0.2 nm for dipole alignments perpendicular to the surface. The effect of dipole alignment parallel to the surface is larger than for perpendicular dipoles, likely due to greater lateral correlation of in-plane surface dipoles. The magnitudes and range of the measured interaction forces also depend on the surface area of the probe used: At extended surfaces, dipole alignment parallel to the surface leads to a stronger attraction due to electrostatic correlations of freely rotating surface dipoles and charge patches on the apposing surfaces. In contrast, perpendicular dipoles at extended surfaces, where molecular rotation cannot lead to large dipole correlations, do not depend on the scale of the probe used. Our results may be important to a range of scale-dependent interaction phenomena related to solvent/water structuring on dipolar and hydrophobic surfaces at interfaces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25289697</pmid><doi>10.1021/nn504687b</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2014-10, Vol.8 (10), p.10870-10877
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762066689
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Alignment
Attraction
Correlation
Dipoles
Electrostatics
Lipids
Monolayers
Self-assembled monolayers
title Influence of Molecular Dipole Orientations on Long-Range Exponential Interaction Forces at Hydrophobic Contacts in Aqueous Solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Molecular%20Dipole%20Orientations%20on%20Long-Range%20Exponential%20Interaction%20Forces%20at%20Hydrophobic%20Contacts%20in%20Aqueous%20Solutions&rft.jtitle=ACS%20nano&rft.au=Kristiansen,%20Kai&rft.date=2014-10-28&rft.volume=8&rft.issue=10&rft.spage=10870&rft.epage=10877&rft.pages=10870-10877&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn504687b&rft_dat=%3Cproquest_cross%3E1618142473%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a383t-33d089a1d9c7c46bce0d88cadbd517152ff1743436a314fe777127d4c4085ebd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1618142473&rft_id=info:pmid/25289697&rfr_iscdi=true