Loading…
Transmission through array of subwavelength metallic slits curved with a single step or multi-step
The transmission of normally incident plane wave through an array of subwavelength metallic slits curved with a single step or mutli-step has been explored theoretically. The transmission spectrum is simulated by using the finite-difference time-domain method. The influences of surface plasmon polar...
Saved in:
Published in: | Chinese physics B 2014-03, Vol.23 (3), p.34202-1-034202-8, Article 034202 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The transmission of normally incident plane wave through an array of subwavelength metallic slits curved with a single step or mutli-step has been explored theoretically. The transmission spectrum is simulated by using the finite-difference time-domain method. The influences of surface plasmon polaritons make the end of finite long sub-wavelength metallic slit behaves as magnetic-reflecting barrier. The electromagnetic fields in the subwavelength metallic slits are the superposition of standing wave and traveling wave. The standing electromagnetic oscillation behaves like LC oscillating circuit to decide the resonance wavelength. Therefore, the parameters of adding step may change the LC circuit and influence the transmission wavelength. A new explanation model is proposed in which the resonant wavelength is decided by four factors: the changed length for electric field, the changed length for magnetic field, the effective coefficient of capacitance, and the effective coefficient of inductance. The effect of adding step is presented to analyze the interaction of two steps in slit with mutli-step. This explanation model has been proved by the transmission through arrayed subwavelength metallic slits curved with two steps and fractal steps. All calculated results are well explained by our proposed model. |
---|---|
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/23/3/034202 |