Loading…

Controlling Molecular Self-Assembly on an Insulating Surface by Rationally Designing an Efficient Anchor Functionality That Maintains Structural Flexibility

Molecular self-assembly on surfaces is dictated by the delicate balance between intermolecular and molecule–surface interactions. For many insulating surfaces, however, the molecule–surface interactions are weak and rather unspecific. Enhancing these interactions, on the other hand, often puts a sev...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2013-06, Vol.7 (6), p.5491-5498
Main Authors: Hauke, Christopher M, Bechstein, Ralf, Kittelmann, Markus, Storz, Christof, Kilbinger, Andreas F. M, Rahe, Philipp, Kühnle, Angelika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular self-assembly on surfaces is dictated by the delicate balance between intermolecular and molecule–surface interactions. For many insulating surfaces, however, the molecule–surface interactions are weak and rather unspecific. Enhancing these interactions, on the other hand, often puts a severe limit on the achievable structural variety. To grasp the full potential of molecular self-assembly on these application-relevant substrates, therefore, requires strategies for anchoring the molecular building blocks toward the surface in a way that maintains flexibility in terms of intermolecular interaction and relative molecule orientation. Here, we report the design of a site-specific anchor functionality that provides strong anchoring toward the surface, resulting in a well-defined adsorption position. At the same time, the anchor does not significantly interfere with the intermolecular interaction, ensuring structural flexibility. We demonstrate the success of this approach with three molecules from the class of shape-persistent oligo(p-benzamide)s adsorbed onto the calcite(10.4) surface. These molecules have the same aromatic backbone with iodine substituents, providing the same basic adsorption mechanism to the surface calcium cations. The backbone is equipped with different functional groups. These have a negligible influence on the molecular adsorption on the surface but significantly change the intermolecular interaction. We show that distinctly different molecular structures are obtained that wet the surface due to the strong linker while maintaining variability in the relative molecular orientation. With this study, we thus provide a versatile strategy for increasing the structural richness in molecular self-assembly on insulating substrates.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn401589u