Loading…

Deadbeat Predictive Power Control of Single-Phase Three-Level Neutral-Point-Clamped Converters Using Space-Vector Modulation for Electric Railway Traction

This paper presents an alternative approach to address the control and modulation problem of single-phase three-level converters applied in the high-speed railway electrical traction drive system. Following the principle of deadbeat predictive direct torque control of ac motors, this paper discusses...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2016-01, Vol.31 (1), p.721-732
Main Authors: Song, Wensheng, Ma, Junpeng, Zhou, Liang, Feng, Xiaoyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an alternative approach to address the control and modulation problem of single-phase three-level converters applied in the high-speed railway electrical traction drive system. Following the principle of deadbeat predictive direct torque control of ac motors, this paper discusses an improved direct power control (DPC) method based on a deadbeat active and reactive power prediction technique. Comparing with the conventional PI-based DPC scheme, the proposed deadbeat predictive DPC scheme can provide these advantageous features: lower current harmonics and THD index, lower active and reactive power ripples, and fewer adjusted parameters. Moreover, compared with PI-based DPC with the PI parameters optimization, this approach can also easily obtain fast dynamic response but without the main voltage orientation. A single-phase three-level space vector pulse width modulation (SVPWM) with inherent neutral-point voltage balancing capability is adopted, which can be combined with DPC scheme as an overall control and modulation system. A series of simulation and experimental tests have been conducted to demonstrate an excellent performance of the deadbeat predictive DPC. In addition, the neutral-point-voltage balancing ability of the adopted SVPWM method has been verified.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2015.2400924