Loading…
Degradation behaviors of high power GaN-based blue light emitting diodes
The degradation mechanism of high power InGaN/GaN blue light emitting diodes (LEDs) is investigated in this paper. The LED samples were stressed at room temperature under 350-mA injection current for about 400 h. The light output power of the LEDs decreased by 35% during the first 100 h and then rem...
Saved in:
Published in: | Chinese physics B 2013-11, Vol.22 (11), p.603-606 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The degradation mechanism of high power InGaN/GaN blue light emitting diodes (LEDs) is investigated in this paper. The LED samples were stressed at room temperature under 350-mA injection current for about 400 h. The light output power of the LEDs decreased by 35% during the first 100 h and then remained almost unchanged, and the reverse current at-5 V increased from 10^-9 A to 10^-7 A during the aging process. The power law, whose meaning was re-illustrated by the improved rate equation, was used to analyze the light output power-injection current (L-I) curves. The analysis results indicate that nonradiative recombination, Auger recombination, and the third-order term of carriers overflow increase during the aging process, all of which may be important reasons for the degradation of LEDs. Besides, simulating L-I curves with the improved rate equation reveal that higher-than-third-order terms of carriers overflow may not be the main degradation mechanism, because they change slightly when the LED is stressed. |
---|---|
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/22/11/117804 |