Loading…
Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth
In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn–Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in Colli et al....
Saved in:
Published in: | Nonlinear analysis: real world applications 2015-12, Vol.26, p.93-108 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3 |
container_end_page | 108 |
container_issue | |
container_start_page | 93 |
container_title | Nonlinear analysis: real world applications |
container_volume | 26 |
creator | Colli, Pierluigi Gilardi, Gianni Rocca, Elisabetta Sprekels, Jürgen |
description | In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn–Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in Colli et al. (2015), letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system. |
doi_str_mv | 10.1016/j.nonrwa.2015.05.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762073918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121815000528</els_id><sourcerecordid>1762073918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3</originalsourceid><addsrcrecordid>eNp9UMtqG0EQXEwMURz_QQ5zzGWV7tn3xRBEYhkEvti-Dr2zvdKI1YwyM5LRLf_gP_SXZIR8DhR0N11VUJVl3xDmCFj_2M6ts_6V5hKwmkMCyKtshm3T5lWD3ae0l3Wbo8T2c_YlhC0ANljgLLMvZE3YGLsWRxO0CyYaDoLsINh75wWHaHYUWYzpILGgjX3_-7Y002TIDyKe9iz2GwqJYHgaRDiFyDvheUqi9HciHnZJuvbuNW6-ZtcjTYFvP-ZN9vz719Nima8e7x8WP1e5LiuMue57QC27moaOpK7HUsMoNVBH2PYNyaGqqqFtOui7Vsq-oKIGKDtZUlMWNBY32feL7967P4eUQe1SOp4msuwOQWFTS2iKDttELS9U7V0Inke19ymxPykEda5XbdWlXnWuV0ECyCS7u8g4xTga9ipow1bzYDzrqAZn_m_wDwLFiDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762073918</pqid></control><display><type>article</type><title>Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth</title><source>Elsevier</source><creator>Colli, Pierluigi ; Gilardi, Gianni ; Rocca, Elisabetta ; Sprekels, Jürgen</creator><creatorcontrib>Colli, Pierluigi ; Gilardi, Gianni ; Rocca, Elisabetta ; Sprekels, Jürgen</creatorcontrib><description>In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn–Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in Colli et al. (2015), letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2015.05.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Asymptotic analysis ; Asymptotic properties ; Cahn–Hilliard System ; Error estimates ; Errors ; Estimates ; Mathematical models ; Nonlinearity ; Reaction–diffusion equation ; Tumor growth ; Tumors ; Viscosity</subject><ispartof>Nonlinear analysis: real world applications, 2015-12, Vol.26, p.93-108</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3</citedby><cites>FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3</cites><orcidid>0000-0002-7921-5041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Colli, Pierluigi</creatorcontrib><creatorcontrib>Gilardi, Gianni</creatorcontrib><creatorcontrib>Rocca, Elisabetta</creatorcontrib><creatorcontrib>Sprekels, Jürgen</creatorcontrib><title>Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth</title><title>Nonlinear analysis: real world applications</title><description>In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn–Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in Colli et al. (2015), letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.</description><subject>Approximation</subject><subject>Asymptotic analysis</subject><subject>Asymptotic properties</subject><subject>Cahn–Hilliard System</subject><subject>Error estimates</subject><subject>Errors</subject><subject>Estimates</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Reaction–diffusion equation</subject><subject>Tumor growth</subject><subject>Tumors</subject><subject>Viscosity</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqG0EQXEwMURz_QQ5zzGWV7tn3xRBEYhkEvti-Dr2zvdKI1YwyM5LRLf_gP_SXZIR8DhR0N11VUJVl3xDmCFj_2M6ts_6V5hKwmkMCyKtshm3T5lWD3ae0l3Wbo8T2c_YlhC0ANljgLLMvZE3YGLsWRxO0CyYaDoLsINh75wWHaHYUWYzpILGgjX3_-7Y002TIDyKe9iz2GwqJYHgaRDiFyDvheUqi9HciHnZJuvbuNW6-ZtcjTYFvP-ZN9vz719Nima8e7x8WP1e5LiuMue57QC27moaOpK7HUsMoNVBH2PYNyaGqqqFtOui7Vsq-oKIGKDtZUlMWNBY32feL7967P4eUQe1SOp4msuwOQWFTS2iKDttELS9U7V0Inke19ymxPykEda5XbdWlXnWuV0ECyCS7u8g4xTga9ipow1bzYDzrqAZn_m_wDwLFiDw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Colli, Pierluigi</creator><creator>Gilardi, Gianni</creator><creator>Rocca, Elisabetta</creator><creator>Sprekels, Jürgen</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7921-5041</orcidid></search><sort><creationdate>20151201</creationdate><title>Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth</title><author>Colli, Pierluigi ; Gilardi, Gianni ; Rocca, Elisabetta ; Sprekels, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Asymptotic analysis</topic><topic>Asymptotic properties</topic><topic>Cahn–Hilliard System</topic><topic>Error estimates</topic><topic>Errors</topic><topic>Estimates</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Reaction–diffusion equation</topic><topic>Tumor growth</topic><topic>Tumors</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colli, Pierluigi</creatorcontrib><creatorcontrib>Gilardi, Gianni</creatorcontrib><creatorcontrib>Rocca, Elisabetta</creatorcontrib><creatorcontrib>Sprekels, Jürgen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colli, Pierluigi</au><au>Gilardi, Gianni</au><au>Rocca, Elisabetta</au><au>Sprekels, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>26</volume><spage>93</spage><epage>108</epage><pages>93-108</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn–Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in Colli et al. (2015), letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2015.05.002</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7921-5041</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-1218 |
ispartof | Nonlinear analysis: real world applications, 2015-12, Vol.26, p.93-108 |
issn | 1468-1218 1878-5719 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762073918 |
source | Elsevier |
subjects | Approximation Asymptotic analysis Asymptotic properties Cahn–Hilliard System Error estimates Errors Estimates Mathematical models Nonlinearity Reaction–diffusion equation Tumor growth Tumors Viscosity |
title | Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanishing%20viscosities%20and%20error%20estimate%20for%20a%20Cahn%E2%80%93Hilliard%20type%20phase%20field%20system%20related%20to%20tumor%20growth&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Colli,%20Pierluigi&rft.date=2015-12-01&rft.volume=26&rft.spage=93&rft.epage=108&rft.pages=93-108&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2015.05.002&rft_dat=%3Cproquest_cross%3E1762073918%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762073918&rft_id=info:pmid/&rfr_iscdi=true |