Loading…

Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth

In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn–Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in Colli et al....

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis: real world applications 2015-12, Vol.26, p.93-108
Main Authors: Colli, Pierluigi, Gilardi, Gianni, Rocca, Elisabetta, Sprekels, Jürgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3
cites cdi_FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3
container_end_page 108
container_issue
container_start_page 93
container_title Nonlinear analysis: real world applications
container_volume 26
creator Colli, Pierluigi
Gilardi, Gianni
Rocca, Elisabetta
Sprekels, Jürgen
description In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn–Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in Colli et al. (2015), letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.
doi_str_mv 10.1016/j.nonrwa.2015.05.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762073918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121815000528</els_id><sourcerecordid>1762073918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3</originalsourceid><addsrcrecordid>eNp9UMtqG0EQXEwMURz_QQ5zzGWV7tn3xRBEYhkEvti-Dr2zvdKI1YwyM5LRLf_gP_SXZIR8DhR0N11VUJVl3xDmCFj_2M6ts_6V5hKwmkMCyKtshm3T5lWD3ae0l3Wbo8T2c_YlhC0ANljgLLMvZE3YGLsWRxO0CyYaDoLsINh75wWHaHYUWYzpILGgjX3_-7Y002TIDyKe9iz2GwqJYHgaRDiFyDvheUqi9HciHnZJuvbuNW6-ZtcjTYFvP-ZN9vz719Nima8e7x8WP1e5LiuMue57QC27moaOpK7HUsMoNVBH2PYNyaGqqqFtOui7Vsq-oKIGKDtZUlMWNBY32feL7967P4eUQe1SOp4msuwOQWFTS2iKDttELS9U7V0Inke19ymxPykEda5XbdWlXnWuV0ECyCS7u8g4xTga9ipow1bzYDzrqAZn_m_wDwLFiDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762073918</pqid></control><display><type>article</type><title>Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth</title><source>Elsevier</source><creator>Colli, Pierluigi ; Gilardi, Gianni ; Rocca, Elisabetta ; Sprekels, Jürgen</creator><creatorcontrib>Colli, Pierluigi ; Gilardi, Gianni ; Rocca, Elisabetta ; Sprekels, Jürgen</creatorcontrib><description>In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn–Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in Colli et al. (2015), letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2015.05.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Asymptotic analysis ; Asymptotic properties ; Cahn–Hilliard System ; Error estimates ; Errors ; Estimates ; Mathematical models ; Nonlinearity ; Reaction–diffusion equation ; Tumor growth ; Tumors ; Viscosity</subject><ispartof>Nonlinear analysis: real world applications, 2015-12, Vol.26, p.93-108</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3</citedby><cites>FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3</cites><orcidid>0000-0002-7921-5041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Colli, Pierluigi</creatorcontrib><creatorcontrib>Gilardi, Gianni</creatorcontrib><creatorcontrib>Rocca, Elisabetta</creatorcontrib><creatorcontrib>Sprekels, Jürgen</creatorcontrib><title>Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth</title><title>Nonlinear analysis: real world applications</title><description>In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn–Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in Colli et al. (2015), letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.</description><subject>Approximation</subject><subject>Asymptotic analysis</subject><subject>Asymptotic properties</subject><subject>Cahn–Hilliard System</subject><subject>Error estimates</subject><subject>Errors</subject><subject>Estimates</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Reaction–diffusion equation</subject><subject>Tumor growth</subject><subject>Tumors</subject><subject>Viscosity</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqG0EQXEwMURz_QQ5zzGWV7tn3xRBEYhkEvti-Dr2zvdKI1YwyM5LRLf_gP_SXZIR8DhR0N11VUJVl3xDmCFj_2M6ts_6V5hKwmkMCyKtshm3T5lWD3ae0l3Wbo8T2c_YlhC0ANljgLLMvZE3YGLsWRxO0CyYaDoLsINh75wWHaHYUWYzpILGgjX3_-7Y002TIDyKe9iz2GwqJYHgaRDiFyDvheUqi9HciHnZJuvbuNW6-ZtcjTYFvP-ZN9vz719Nima8e7x8WP1e5LiuMue57QC27moaOpK7HUsMoNVBH2PYNyaGqqqFtOui7Vsq-oKIGKDtZUlMWNBY32feL7967P4eUQe1SOp4msuwOQWFTS2iKDttELS9U7V0Inke19ymxPykEda5XbdWlXnWuV0ECyCS7u8g4xTga9ipow1bzYDzrqAZn_m_wDwLFiDw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Colli, Pierluigi</creator><creator>Gilardi, Gianni</creator><creator>Rocca, Elisabetta</creator><creator>Sprekels, Jürgen</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7921-5041</orcidid></search><sort><creationdate>20151201</creationdate><title>Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth</title><author>Colli, Pierluigi ; Gilardi, Gianni ; Rocca, Elisabetta ; Sprekels, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Asymptotic analysis</topic><topic>Asymptotic properties</topic><topic>Cahn–Hilliard System</topic><topic>Error estimates</topic><topic>Errors</topic><topic>Estimates</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Reaction–diffusion equation</topic><topic>Tumor growth</topic><topic>Tumors</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colli, Pierluigi</creatorcontrib><creatorcontrib>Gilardi, Gianni</creatorcontrib><creatorcontrib>Rocca, Elisabetta</creatorcontrib><creatorcontrib>Sprekels, Jürgen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colli, Pierluigi</au><au>Gilardi, Gianni</au><au>Rocca, Elisabetta</au><au>Sprekels, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>26</volume><spage>93</spage><epage>108</epage><pages>93-108</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn–Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in Colli et al. (2015), letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2015.05.002</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7921-5041</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2015-12, Vol.26, p.93-108
issn 1468-1218
1878-5719
language eng
recordid cdi_proquest_miscellaneous_1762073918
source Elsevier
subjects Approximation
Asymptotic analysis
Asymptotic properties
Cahn–Hilliard System
Error estimates
Errors
Estimates
Mathematical models
Nonlinearity
Reaction–diffusion equation
Tumor growth
Tumors
Viscosity
title Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanishing%20viscosities%20and%20error%20estimate%20for%20a%20Cahn%E2%80%93Hilliard%20type%20phase%20field%20system%20related%20to%20tumor%20growth&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Colli,%20Pierluigi&rft.date=2015-12-01&rft.volume=26&rft.spage=93&rft.epage=108&rft.pages=93-108&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2015.05.002&rft_dat=%3Cproquest_cross%3E1762073918%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-cbb01c296ad9a2c6f4c0f2c0a9a18b7a2d555d8790b9822b3a36004924a743af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762073918&rft_id=info:pmid/&rfr_iscdi=true