Loading…

An Approach to Supporting Incremental Visual Data Classification

Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2015-01, Vol.21 (1), p.4-17
Main Authors: Paiva, Jose Gustavo S., Schwartz, William Robson, Pedrini, Helio, Minghim, Rosane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3
cites cdi_FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3
container_end_page 17
container_issue 1
container_start_page 4
container_title IEEE transactions on visualization and computer graphics
container_volume 21
creator Paiva, Jose Gustavo S.
Schwartz, William Robson
Pedrini, Helio
Minghim, Rosane
description Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models.
doi_str_mv 10.1109/TVCG.2014.2331979
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762077806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6840370</ieee_id><sourcerecordid>1762077806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3</originalsourceid><addsrcrecordid>eNqNkU1PwzAMhiMEYjD4AQgJVeLCpSNO0qS5MRUYkyZxYOwapVkKmfpF0x7492Ta2IETJ1v2Y-u1X4SuAE8AsLxfrrLZhGBgE0IpSCGP0BlIBjFOMD8OORYiJpzwETr3foMDyVJ5ikaE00RgEGfoYVpH07btGm0-o76J3oa2bbre1R_RvDadrWzd6zJaOT-E8Kh7HWWl9t4VzujeNfUFOil06e3lPo7R-_PTMnuJF6-zeTZdxIampI8lz6WgqSA0DYVkTaTBBkuNKSNGY2EoAaBkLUySJ4JwmepccENyWmjGZEHH6G63N2j9GqzvVeW8sWWpa9sMXoHgJJybYv4PFCBhkCYyoLd_0E0zdHU4RAHnlHNJg-Qxgh1lusb7zhaq7Vylu28FWG2dUFsn1NYJtXcizNzsNw95ZdeHid_XB-B6Bzhr7aHNU4apwPQHncKJgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663669372</pqid></control><display><type>article</type><title>An Approach to Supporting Incremental Visual Data Classification</title><source>IEEE Xplore (Online service)</source><creator>Paiva, Jose Gustavo S. ; Schwartz, William Robson ; Pedrini, Helio ; Minghim, Rosane</creator><creatorcontrib>Paiva, Jose Gustavo S. ; Schwartz, William Robson ; Pedrini, Helio ; Minghim, Rosane</creatorcontrib><description>Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2014.2331979</identifier><identifier>PMID: 26357017</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Classification ; Classifiers ; Computational modeling ; Data models ; Data visualization ; Datasets ; Evolution ; Layout ; Mathematical model ; Methodology ; Program verification (computers) ; Training ; Visual ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2015-01, Vol.21 (1), p.4-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3</citedby><cites>FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6840370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26357017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paiva, Jose Gustavo S.</creatorcontrib><creatorcontrib>Schwartz, William Robson</creatorcontrib><creatorcontrib>Pedrini, Helio</creatorcontrib><creatorcontrib>Minghim, Rosane</creatorcontrib><title>An Approach to Supporting Incremental Visual Data Classification</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Datasets</subject><subject>Evolution</subject><subject>Layout</subject><subject>Mathematical model</subject><subject>Methodology</subject><subject>Program verification (computers)</subject><subject>Training</subject><subject>Visual</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1PwzAMhiMEYjD4AQgJVeLCpSNO0qS5MRUYkyZxYOwapVkKmfpF0x7492Ta2IETJ1v2Y-u1X4SuAE8AsLxfrrLZhGBgE0IpSCGP0BlIBjFOMD8OORYiJpzwETr3foMDyVJ5ikaE00RgEGfoYVpH07btGm0-o76J3oa2bbre1R_RvDadrWzd6zJaOT-E8Kh7HWWl9t4VzujeNfUFOil06e3lPo7R-_PTMnuJF6-zeTZdxIampI8lz6WgqSA0DYVkTaTBBkuNKSNGY2EoAaBkLUySJ4JwmepccENyWmjGZEHH6G63N2j9GqzvVeW8sWWpa9sMXoHgJJybYv4PFCBhkCYyoLd_0E0zdHU4RAHnlHNJg-Qxgh1lusb7zhaq7Vylu28FWG2dUFsn1NYJtXcizNzsNw95ZdeHid_XB-B6Bzhr7aHNU4apwPQHncKJgQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Paiva, Jose Gustavo S.</creator><creator>Schwartz, William Robson</creator><creator>Pedrini, Helio</creator><creator>Minghim, Rosane</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150101</creationdate><title>An Approach to Supporting Incremental Visual Data Classification</title><author>Paiva, Jose Gustavo S. ; Schwartz, William Robson ; Pedrini, Helio ; Minghim, Rosane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Datasets</topic><topic>Evolution</topic><topic>Layout</topic><topic>Mathematical model</topic><topic>Methodology</topic><topic>Program verification (computers)</topic><topic>Training</topic><topic>Visual</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paiva, Jose Gustavo S.</creatorcontrib><creatorcontrib>Schwartz, William Robson</creatorcontrib><creatorcontrib>Pedrini, Helio</creatorcontrib><creatorcontrib>Minghim, Rosane</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paiva, Jose Gustavo S.</au><au>Schwartz, William Robson</au><au>Pedrini, Helio</au><au>Minghim, Rosane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approach to Supporting Incremental Visual Data Classification</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>21</volume><issue>1</issue><spage>4</spage><epage>17</epage><pages>4-17</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26357017</pmid><doi>10.1109/TVCG.2014.2331979</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2015-01, Vol.21 (1), p.4-17
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_1762077806
source IEEE Xplore (Online service)
subjects Classification
Classifiers
Computational modeling
Data models
Data visualization
Datasets
Evolution
Layout
Mathematical model
Methodology
Program verification (computers)
Training
Visual
Visualization
title An Approach to Supporting Incremental Visual Data Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approach%20to%20Supporting%20Incremental%20Visual%20Data%20Classification&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Paiva,%20Jose%20Gustavo%20S.&rft.date=2015-01-01&rft.volume=21&rft.issue=1&rft.spage=4&rft.epage=17&rft.pages=4-17&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2014.2331979&rft_dat=%3Cproquest_pubme%3E1762077806%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1663669372&rft_id=info:pmid/26357017&rft_ieee_id=6840370&rfr_iscdi=true