Loading…
An Approach to Supporting Incremental Visual Data Classification
Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2015-01, Vol.21 (1), p.4-17 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3 |
container_end_page | 17 |
container_issue | 1 |
container_start_page | 4 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 21 |
creator | Paiva, Jose Gustavo S. Schwartz, William Robson Pedrini, Helio Minghim, Rosane |
description | Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models. |
doi_str_mv | 10.1109/TVCG.2014.2331979 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762077806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6840370</ieee_id><sourcerecordid>1762077806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3</originalsourceid><addsrcrecordid>eNqNkU1PwzAMhiMEYjD4AQgJVeLCpSNO0qS5MRUYkyZxYOwapVkKmfpF0x7492Ta2IETJ1v2Y-u1X4SuAE8AsLxfrrLZhGBgE0IpSCGP0BlIBjFOMD8OORYiJpzwETr3foMDyVJ5ikaE00RgEGfoYVpH07btGm0-o76J3oa2bbre1R_RvDadrWzd6zJaOT-E8Kh7HWWl9t4VzujeNfUFOil06e3lPo7R-_PTMnuJF6-zeTZdxIampI8lz6WgqSA0DYVkTaTBBkuNKSNGY2EoAaBkLUySJ4JwmepccENyWmjGZEHH6G63N2j9GqzvVeW8sWWpa9sMXoHgJJybYv4PFCBhkCYyoLd_0E0zdHU4RAHnlHNJg-Qxgh1lusb7zhaq7Vylu28FWG2dUFsn1NYJtXcizNzsNw95ZdeHid_XB-B6Bzhr7aHNU4apwPQHncKJgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663669372</pqid></control><display><type>article</type><title>An Approach to Supporting Incremental Visual Data Classification</title><source>IEEE Xplore (Online service)</source><creator>Paiva, Jose Gustavo S. ; Schwartz, William Robson ; Pedrini, Helio ; Minghim, Rosane</creator><creatorcontrib>Paiva, Jose Gustavo S. ; Schwartz, William Robson ; Pedrini, Helio ; Minghim, Rosane</creatorcontrib><description>Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2014.2331979</identifier><identifier>PMID: 26357017</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Classification ; Classifiers ; Computational modeling ; Data models ; Data visualization ; Datasets ; Evolution ; Layout ; Mathematical model ; Methodology ; Program verification (computers) ; Training ; Visual ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2015-01, Vol.21 (1), p.4-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3</citedby><cites>FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6840370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26357017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paiva, Jose Gustavo S.</creatorcontrib><creatorcontrib>Schwartz, William Robson</creatorcontrib><creatorcontrib>Pedrini, Helio</creatorcontrib><creatorcontrib>Minghim, Rosane</creatorcontrib><title>An Approach to Supporting Incremental Visual Data Classification</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Datasets</subject><subject>Evolution</subject><subject>Layout</subject><subject>Mathematical model</subject><subject>Methodology</subject><subject>Program verification (computers)</subject><subject>Training</subject><subject>Visual</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1PwzAMhiMEYjD4AQgJVeLCpSNO0qS5MRUYkyZxYOwapVkKmfpF0x7492Ta2IETJ1v2Y-u1X4SuAE8AsLxfrrLZhGBgE0IpSCGP0BlIBjFOMD8OORYiJpzwETr3foMDyVJ5ikaE00RgEGfoYVpH07btGm0-o76J3oa2bbre1R_RvDadrWzd6zJaOT-E8Kh7HWWl9t4VzujeNfUFOil06e3lPo7R-_PTMnuJF6-zeTZdxIampI8lz6WgqSA0DYVkTaTBBkuNKSNGY2EoAaBkLUySJ4JwmepccENyWmjGZEHH6G63N2j9GqzvVeW8sWWpa9sMXoHgJJybYv4PFCBhkCYyoLd_0E0zdHU4RAHnlHNJg-Qxgh1lusb7zhaq7Vylu28FWG2dUFsn1NYJtXcizNzsNw95ZdeHid_XB-B6Bzhr7aHNU4apwPQHncKJgQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Paiva, Jose Gustavo S.</creator><creator>Schwartz, William Robson</creator><creator>Pedrini, Helio</creator><creator>Minghim, Rosane</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150101</creationdate><title>An Approach to Supporting Incremental Visual Data Classification</title><author>Paiva, Jose Gustavo S. ; Schwartz, William Robson ; Pedrini, Helio ; Minghim, Rosane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Datasets</topic><topic>Evolution</topic><topic>Layout</topic><topic>Mathematical model</topic><topic>Methodology</topic><topic>Program verification (computers)</topic><topic>Training</topic><topic>Visual</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paiva, Jose Gustavo S.</creatorcontrib><creatorcontrib>Schwartz, William Robson</creatorcontrib><creatorcontrib>Pedrini, Helio</creatorcontrib><creatorcontrib>Minghim, Rosane</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paiva, Jose Gustavo S.</au><au>Schwartz, William Robson</au><au>Pedrini, Helio</au><au>Minghim, Rosane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approach to Supporting Incremental Visual Data Classification</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>21</volume><issue>1</issue><spage>4</spage><epage>17</epage><pages>4-17</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26357017</pmid><doi>10.1109/TVCG.2014.2331979</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2015-01, Vol.21 (1), p.4-17 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762077806 |
source | IEEE Xplore (Online service) |
subjects | Classification Classifiers Computational modeling Data models Data visualization Datasets Evolution Layout Mathematical model Methodology Program verification (computers) Training Visual Visualization |
title | An Approach to Supporting Incremental Visual Data Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approach%20to%20Supporting%20Incremental%20Visual%20Data%20Classification&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Paiva,%20Jose%20Gustavo%20S.&rft.date=2015-01-01&rft.volume=21&rft.issue=1&rft.spage=4&rft.epage=17&rft.pages=4-17&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2014.2331979&rft_dat=%3Cproquest_pubme%3E1762077806%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-96b97387238c385d29c0c09a0342ca07c321132d7c5b572698ab76c2b3fa449f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1663669372&rft_id=info:pmid/26357017&rft_ieee_id=6840370&rfr_iscdi=true |