Loading…
An interior point method designed for solving linear quadratic optimal control problems with hp finite elements
We consider linear quadratic optimal control problems with elliptic partial differential equations. The problem is solved with an interior point method in the control variable. We prove convergence of this method in function space by employing a suitable smoothing operator. As discretization we choo...
Saved in:
Published in: | Optimization methods & software 2015-11, Vol.30 (6), p.1276-1302 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93 |
container_end_page | 1302 |
container_issue | 6 |
container_start_page | 1276 |
container_title | Optimization methods & software |
container_volume | 30 |
creator | Wachsmuth, D. Wurst, J.-E. |
description | We consider linear quadratic optimal control problems with elliptic partial differential equations. The problem is solved with an interior point method in the control variable. We prove convergence of this method in function space by employing a suitable smoothing operator. As discretization we choose hp-finite element method based on local estimates on the smoothness of functions. A fully adaptive algorithm is implemented and a-posteriori error estimators are derived for the central path and the Newton system. The theoretical results are complemented by numerical examples. |
doi_str_mv | 10.1080/10556788.2015.1045067 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762084202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3816890361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93</originalsourceid><addsrcrecordid>eNp9kU1rHDEMhofSQNIkPyFg6KWXSWyvP2ZvXZamLQRyac_GY8tZB489a3sT8u_jYTeXHqqLhPRISHq77obgW4IHfEcw50IOwy3FhLcU41jIT90FwXTds_VKfl5izvsFOu--lPKMMWaEiYsubSLysUL2KaM5tRBNUHfJIgvFP0WwyLVKSeHFxycUfASd0f6gbdbVG5Tm6icdkEmx5hTQnNMYYCro1dcd2s3I-egrIGhJiLVcdWdOhwLXJ3_Z_b3_8Wf7q394_Pl7u3noDWOk9gLImjs6grOajRqaGTZKLCUMgjAgg9EWjB2xgJUgVI9GUkep4ZZjN65Xl92349y20P4AparJFwMh6AjpUBSRguKBUUwb-vUf9DkdcmzbNYqI9lM5LBQ_UianUjI4Ned2eX5TBKtFBvUhg1pkUCcZWt_3Y5-P7ZGTfk05WFX1W0jZZR2NL2r1_xHvGJSRfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1716015782</pqid></control><display><type>article</type><title>An interior point method designed for solving linear quadratic optimal control problems with hp finite elements</title><source>Taylor and Francis Science and Technology Collection</source><creator>Wachsmuth, D. ; Wurst, J.-E.</creator><creatorcontrib>Wachsmuth, D. ; Wurst, J.-E.</creatorcontrib><description>We consider linear quadratic optimal control problems with elliptic partial differential equations. The problem is solved with an interior point method in the control variable. We prove convergence of this method in function space by employing a suitable smoothing operator. As discretization we choose hp-finite element method based on local estimates on the smoothness of functions. A fully adaptive algorithm is implemented and a-posteriori error estimators are derived for the central path and the Newton system. The theoretical results are complemented by numerical examples.</description><identifier>ISSN: 1055-6788</identifier><identifier>EISSN: 1029-4937</identifier><identifier>DOI: 10.1080/10556788.2015.1045067</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>adaptive refinement ; Computer programs ; control constraints ; Discretization ; Estimates ; Finite element analysis ; Function space ; hp-finite elements ; interior point method ; Linear quadratic ; Mathematical analysis ; Mathematical models ; Optimal control ; Optimization ; Queuing theory</subject><ispartof>Optimization methods & software, 2015-11, Vol.30 (6), p.1276-1302</ispartof><rights>2015 Taylor & Francis 2015</rights><rights>2015 Taylor & Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93</citedby><cites>FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wachsmuth, D.</creatorcontrib><creatorcontrib>Wurst, J.-E.</creatorcontrib><title>An interior point method designed for solving linear quadratic optimal control problems with hp finite elements</title><title>Optimization methods & software</title><description>We consider linear quadratic optimal control problems with elliptic partial differential equations. The problem is solved with an interior point method in the control variable. We prove convergence of this method in function space by employing a suitable smoothing operator. As discretization we choose hp-finite element method based on local estimates on the smoothness of functions. A fully adaptive algorithm is implemented and a-posteriori error estimators are derived for the central path and the Newton system. The theoretical results are complemented by numerical examples.</description><subject>adaptive refinement</subject><subject>Computer programs</subject><subject>control constraints</subject><subject>Discretization</subject><subject>Estimates</subject><subject>Finite element analysis</subject><subject>Function space</subject><subject>hp-finite elements</subject><subject>interior point method</subject><subject>Linear quadratic</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Queuing theory</subject><issn>1055-6788</issn><issn>1029-4937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rHDEMhofSQNIkPyFg6KWXSWyvP2ZvXZamLQRyac_GY8tZB489a3sT8u_jYTeXHqqLhPRISHq77obgW4IHfEcw50IOwy3FhLcU41jIT90FwXTds_VKfl5izvsFOu--lPKMMWaEiYsubSLysUL2KaM5tRBNUHfJIgvFP0WwyLVKSeHFxycUfASd0f6gbdbVG5Tm6icdkEmx5hTQnNMYYCro1dcd2s3I-egrIGhJiLVcdWdOhwLXJ3_Z_b3_8Wf7q394_Pl7u3noDWOk9gLImjs6grOajRqaGTZKLCUMgjAgg9EWjB2xgJUgVI9GUkep4ZZjN65Xl92349y20P4AparJFwMh6AjpUBSRguKBUUwb-vUf9DkdcmzbNYqI9lM5LBQ_UianUjI4Ned2eX5TBKtFBvUhg1pkUCcZWt_3Y5-P7ZGTfk05WFX1W0jZZR2NL2r1_xHvGJSRfg</recordid><startdate>20151102</startdate><enddate>20151102</enddate><creator>Wachsmuth, D.</creator><creator>Wurst, J.-E.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151102</creationdate><title>An interior point method designed for solving linear quadratic optimal control problems with hp finite elements</title><author>Wachsmuth, D. ; Wurst, J.-E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>adaptive refinement</topic><topic>Computer programs</topic><topic>control constraints</topic><topic>Discretization</topic><topic>Estimates</topic><topic>Finite element analysis</topic><topic>Function space</topic><topic>hp-finite elements</topic><topic>interior point method</topic><topic>Linear quadratic</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Queuing theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wachsmuth, D.</creatorcontrib><creatorcontrib>Wurst, J.-E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Optimization methods & software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wachsmuth, D.</au><au>Wurst, J.-E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interior point method designed for solving linear quadratic optimal control problems with hp finite elements</atitle><jtitle>Optimization methods & software</jtitle><date>2015-11-02</date><risdate>2015</risdate><volume>30</volume><issue>6</issue><spage>1276</spage><epage>1302</epage><pages>1276-1302</pages><issn>1055-6788</issn><eissn>1029-4937</eissn><abstract>We consider linear quadratic optimal control problems with elliptic partial differential equations. The problem is solved with an interior point method in the control variable. We prove convergence of this method in function space by employing a suitable smoothing operator. As discretization we choose hp-finite element method based on local estimates on the smoothness of functions. A fully adaptive algorithm is implemented and a-posteriori error estimators are derived for the central path and the Newton system. The theoretical results are complemented by numerical examples.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/10556788.2015.1045067</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1055-6788 |
ispartof | Optimization methods & software, 2015-11, Vol.30 (6), p.1276-1302 |
issn | 1055-6788 1029-4937 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762084202 |
source | Taylor and Francis Science and Technology Collection |
subjects | adaptive refinement Computer programs control constraints Discretization Estimates Finite element analysis Function space hp-finite elements interior point method Linear quadratic Mathematical analysis Mathematical models Optimal control Optimization Queuing theory |
title | An interior point method designed for solving linear quadratic optimal control problems with hp finite elements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interior%20point%20method%20designed%20for%20solving%20linear%20quadratic%20optimal%20control%20problems%20with%20hp%20finite%20elements&rft.jtitle=Optimization%20methods%20&%20software&rft.au=Wachsmuth,%20D.&rft.date=2015-11-02&rft.volume=30&rft.issue=6&rft.spage=1276&rft.epage=1302&rft.pages=1276-1302&rft.issn=1055-6788&rft.eissn=1029-4937&rft_id=info:doi/10.1080/10556788.2015.1045067&rft_dat=%3Cproquest_cross%3E3816890361%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1716015782&rft_id=info:pmid/&rfr_iscdi=true |