Loading…

An interior point method designed for solving linear quadratic optimal control problems with hp finite elements

We consider linear quadratic optimal control problems with elliptic partial differential equations. The problem is solved with an interior point method in the control variable. We prove convergence of this method in function space by employing a suitable smoothing operator. As discretization we choo...

Full description

Saved in:
Bibliographic Details
Published in:Optimization methods & software 2015-11, Vol.30 (6), p.1276-1302
Main Authors: Wachsmuth, D., Wurst, J.-E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93
cites cdi_FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93
container_end_page 1302
container_issue 6
container_start_page 1276
container_title Optimization methods & software
container_volume 30
creator Wachsmuth, D.
Wurst, J.-E.
description We consider linear quadratic optimal control problems with elliptic partial differential equations. The problem is solved with an interior point method in the control variable. We prove convergence of this method in function space by employing a suitable smoothing operator. As discretization we choose hp-finite element method based on local estimates on the smoothness of functions. A fully adaptive algorithm is implemented and a-posteriori error estimators are derived for the central path and the Newton system. The theoretical results are complemented by numerical examples.
doi_str_mv 10.1080/10556788.2015.1045067
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762084202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3816890361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93</originalsourceid><addsrcrecordid>eNp9kU1rHDEMhofSQNIkPyFg6KWXSWyvP2ZvXZamLQRyac_GY8tZB489a3sT8u_jYTeXHqqLhPRISHq77obgW4IHfEcw50IOwy3FhLcU41jIT90FwXTds_VKfl5izvsFOu--lPKMMWaEiYsubSLysUL2KaM5tRBNUHfJIgvFP0WwyLVKSeHFxycUfASd0f6gbdbVG5Tm6icdkEmx5hTQnNMYYCro1dcd2s3I-egrIGhJiLVcdWdOhwLXJ3_Z_b3_8Wf7q394_Pl7u3noDWOk9gLImjs6grOajRqaGTZKLCUMgjAgg9EWjB2xgJUgVI9GUkep4ZZjN65Xl92349y20P4AparJFwMh6AjpUBSRguKBUUwb-vUf9DkdcmzbNYqI9lM5LBQ_UianUjI4Ned2eX5TBKtFBvUhg1pkUCcZWt_3Y5-P7ZGTfk05WFX1W0jZZR2NL2r1_xHvGJSRfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1716015782</pqid></control><display><type>article</type><title>An interior point method designed for solving linear quadratic optimal control problems with hp finite elements</title><source>Taylor and Francis Science and Technology Collection</source><creator>Wachsmuth, D. ; Wurst, J.-E.</creator><creatorcontrib>Wachsmuth, D. ; Wurst, J.-E.</creatorcontrib><description>We consider linear quadratic optimal control problems with elliptic partial differential equations. The problem is solved with an interior point method in the control variable. We prove convergence of this method in function space by employing a suitable smoothing operator. As discretization we choose hp-finite element method based on local estimates on the smoothness of functions. A fully adaptive algorithm is implemented and a-posteriori error estimators are derived for the central path and the Newton system. The theoretical results are complemented by numerical examples.</description><identifier>ISSN: 1055-6788</identifier><identifier>EISSN: 1029-4937</identifier><identifier>DOI: 10.1080/10556788.2015.1045067</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>adaptive refinement ; Computer programs ; control constraints ; Discretization ; Estimates ; Finite element analysis ; Function space ; hp-finite elements ; interior point method ; Linear quadratic ; Mathematical analysis ; Mathematical models ; Optimal control ; Optimization ; Queuing theory</subject><ispartof>Optimization methods &amp; software, 2015-11, Vol.30 (6), p.1276-1302</ispartof><rights>2015 Taylor &amp; Francis 2015</rights><rights>2015 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93</citedby><cites>FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wachsmuth, D.</creatorcontrib><creatorcontrib>Wurst, J.-E.</creatorcontrib><title>An interior point method designed for solving linear quadratic optimal control problems with hp finite elements</title><title>Optimization methods &amp; software</title><description>We consider linear quadratic optimal control problems with elliptic partial differential equations. The problem is solved with an interior point method in the control variable. We prove convergence of this method in function space by employing a suitable smoothing operator. As discretization we choose hp-finite element method based on local estimates on the smoothness of functions. A fully adaptive algorithm is implemented and a-posteriori error estimators are derived for the central path and the Newton system. The theoretical results are complemented by numerical examples.</description><subject>adaptive refinement</subject><subject>Computer programs</subject><subject>control constraints</subject><subject>Discretization</subject><subject>Estimates</subject><subject>Finite element analysis</subject><subject>Function space</subject><subject>hp-finite elements</subject><subject>interior point method</subject><subject>Linear quadratic</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Queuing theory</subject><issn>1055-6788</issn><issn>1029-4937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rHDEMhofSQNIkPyFg6KWXSWyvP2ZvXZamLQRyac_GY8tZB489a3sT8u_jYTeXHqqLhPRISHq77obgW4IHfEcw50IOwy3FhLcU41jIT90FwXTds_VKfl5izvsFOu--lPKMMWaEiYsubSLysUL2KaM5tRBNUHfJIgvFP0WwyLVKSeHFxycUfASd0f6gbdbVG5Tm6icdkEmx5hTQnNMYYCro1dcd2s3I-egrIGhJiLVcdWdOhwLXJ3_Z_b3_8Wf7q394_Pl7u3noDWOk9gLImjs6grOajRqaGTZKLCUMgjAgg9EWjB2xgJUgVI9GUkep4ZZjN65Xl92349y20P4AparJFwMh6AjpUBSRguKBUUwb-vUf9DkdcmzbNYqI9lM5LBQ_UianUjI4Ned2eX5TBKtFBvUhg1pkUCcZWt_3Y5-P7ZGTfk05WFX1W0jZZR2NL2r1_xHvGJSRfg</recordid><startdate>20151102</startdate><enddate>20151102</enddate><creator>Wachsmuth, D.</creator><creator>Wurst, J.-E.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151102</creationdate><title>An interior point method designed for solving linear quadratic optimal control problems with hp finite elements</title><author>Wachsmuth, D. ; Wurst, J.-E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>adaptive refinement</topic><topic>Computer programs</topic><topic>control constraints</topic><topic>Discretization</topic><topic>Estimates</topic><topic>Finite element analysis</topic><topic>Function space</topic><topic>hp-finite elements</topic><topic>interior point method</topic><topic>Linear quadratic</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Queuing theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wachsmuth, D.</creatorcontrib><creatorcontrib>Wurst, J.-E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Optimization methods &amp; software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wachsmuth, D.</au><au>Wurst, J.-E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interior point method designed for solving linear quadratic optimal control problems with hp finite elements</atitle><jtitle>Optimization methods &amp; software</jtitle><date>2015-11-02</date><risdate>2015</risdate><volume>30</volume><issue>6</issue><spage>1276</spage><epage>1302</epage><pages>1276-1302</pages><issn>1055-6788</issn><eissn>1029-4937</eissn><abstract>We consider linear quadratic optimal control problems with elliptic partial differential equations. The problem is solved with an interior point method in the control variable. We prove convergence of this method in function space by employing a suitable smoothing operator. As discretization we choose hp-finite element method based on local estimates on the smoothness of functions. A fully adaptive algorithm is implemented and a-posteriori error estimators are derived for the central path and the Newton system. The theoretical results are complemented by numerical examples.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10556788.2015.1045067</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1055-6788
ispartof Optimization methods & software, 2015-11, Vol.30 (6), p.1276-1302
issn 1055-6788
1029-4937
language eng
recordid cdi_proquest_miscellaneous_1762084202
source Taylor and Francis Science and Technology Collection
subjects adaptive refinement
Computer programs
control constraints
Discretization
Estimates
Finite element analysis
Function space
hp-finite elements
interior point method
Linear quadratic
Mathematical analysis
Mathematical models
Optimal control
Optimization
Queuing theory
title An interior point method designed for solving linear quadratic optimal control problems with hp finite elements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interior%20point%20method%20designed%20for%20solving%20linear%20quadratic%20optimal%20control%20problems%20with%20hp%20finite%20elements&rft.jtitle=Optimization%20methods%20&%20software&rft.au=Wachsmuth,%20D.&rft.date=2015-11-02&rft.volume=30&rft.issue=6&rft.spage=1276&rft.epage=1302&rft.pages=1276-1302&rft.issn=1055-6788&rft.eissn=1029-4937&rft_id=info:doi/10.1080/10556788.2015.1045067&rft_dat=%3Cproquest_cross%3E3816890361%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-6e195f2befda4baeeeec4b7077e8614e18cadecdb06e3612abc72f22c5d50fb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1716015782&rft_id=info:pmid/&rfr_iscdi=true