Loading…

Effect of noise reducing components on nose landing gear stability for a mid-size aircraft coupled with vortex shedding and freeplay

In the pursuit of quieter aircraft, significant effort has been dedicated to airframe noise identification and reduction. The landing gear is one of the main sources of airframe noise on approach. The addition of noise abatement technologies such as fairings or wheel hub caps is usually considered t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration 2015-10, Vol.354, p.91-103
Main Authors: Eret, Petr, Kennedy, John, Bennett, Gareth J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the pursuit of quieter aircraft, significant effort has been dedicated to airframe noise identification and reduction. The landing gear is one of the main sources of airframe noise on approach. The addition of noise abatement technologies such as fairings or wheel hub caps is usually considered to be the simplest solution to reduce this noise. After touchdown, noise abatement components can potentially affect the inherently nonlinear and dynamically complex behaviour (shimmy) of landing gear. Moreover, fairings can influence the aerodynamic load on the system and interact with the mechanical freeplay in the torque link. This paper presents a numerical study of nose landing gear stability for a mid-size aircraft with low noise solutions, which are modelled by an increase of the relevant model structural parameters to address a hypothetical effect of additional fairings and wheel hub caps. The study shows that the wheel hub caps are not a threat to stability. A fairing has a destabilising effect due to the increased moment of inertia of the strut and a stabilising effect due to the increased torsional stiffness of the strut. As the torsional stiffness is dependent on the method of attachment, in situations where the fairing increases the torsional inertia with little increase to the torsional stiffness, a net destabilising effect can result. Alternatively, it is possible that for the case that if the fairing were to increase equally both the torsional stiffness and the moment of inertia of the strut, then their effects could be mutually negated. However, it has been found here that for small and simple fairings, typical of current landing gear noise abatement design, their implementation will not affect the dynamics and stability of the system in an operational range (Fz≤ 50000N, V≤ 100m/s). This generalisation is strictly dependent on size and installation methods. The aerodynamic load, which would be influenced by the presence of fairings, was modelled using a simple vortex shedding oscillator acting on the strut. The stability boundary was found to remain unaltered by vortex shedding. Significantly however, the addition of freeplay in the torque link was found to cause shimmy over the more typical operating conditions studied here. Unlike the no-freeplay case, there was a suppressed stabilising effect of increased torsional stiffness of the strut caused by the presence of fairing. No interaction between the vortex shedding and the freeplay on the stabi
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2015.06.022